Microstructural homogeneity and superplastic behavior in an aluminum–copper eutectic alloy processed by high-pressure torsion

Abstract

An Al–33 % Cu eutectic alloy was processed by high-pressure torsion (HPT) at room temperature under a compressive pressure of 6.0 GPa for different revolutions up to 10 turns. The Vickers microhardness and microstructure were investigated on vertical cross sections of the disks to evaluate the evolution toward homogeneity with increasing numbers of HPT turns. The hardness behavior follows the strain hardening model of materials after HPT processing and the microstructural development confirms that there is essentially a compatibility between hardness and microstructure in the Al–Cu alloy when processing by HPT. The tensile properties were examined at a high temperature of 723 K after 5 and 10 turns of HPT using a series of strain rates from 3.3 × 10−5 to 1.0 × 10−1 s−1. Excellent superplastic ductilities were achieved when testing at strain rates below 1.0 × 10−3 s−1 with a highest elongation of ~1220 % after 10 turns at an initial strain rate of 1.0 × 10−4 s−1. Close inspection showed that the optimal superplastic strain rates are displaced to a faster strain rate with increasing revolutions from 5 to 10 turns. A deformation mechanism map was constructed for a testing temperature of 723 K using a combination of theoretical relationships and earlier experimental data reported for a conventional coarse-grained Al–33 % Cu alloy. Inspection shows that this map is in excellent agreement with the experimental data for the ultrafine-grained Al–33 % Cu alloy after processing by HPT.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58(4):33–39

    Article  Google Scholar 

  2. 2.

    Langdon TG (2013) Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement. Acta Mater 61:7035–7059

    Article  Google Scholar 

  3. 3.

    Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: Fundamentals and applications. Prog Mater Sci 53:893–979

    Article  Google Scholar 

  4. 4.

    Valiev RZ, Ivanisenko YuV, Rauch EF, Baudelet B (1996) Structure and deformation behaviour of Armco iron subjected to severe plastic deformation. Acta Mater 44:4705–4712

    Article  Google Scholar 

  5. 5.

    Zhilyaev AP, Lee S, Nurislamova GV, Valiev RZ, Langdon TG (2001) Microhardness and microstructural evolution in pure nickel during high-pressure torsion. Scripta Mater 44:2753–2758

    Article  Google Scholar 

  6. 6.

    Zhilyaev AP, Nurislamova GV, Kim B-K, Baro MD, Szpunar JA, Langdon TG (2003) Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater 51:753–765

    Article  Google Scholar 

  7. 7.

    Estrin Y, Molotnikov A, Davies CHJ, Lapovok R (2008) Strain gradient plasticity modelling of high-pressure torsion. J Mech Phys Solids 56:1186–1202

    Article  Google Scholar 

  8. 8.

    Langdon TG (1982) The mechanical properties of superplastic materials. Metall Trans A 13A:689–701

    Article  Google Scholar 

  9. 9.

    Kawasaki M, Langdon TG (2014) Review: achieving superplasticity in metals processed by high-pressure torsion. J Mater Sci 49:6487–6496. doi:10.1007/s10853-014-8204-5

    Article  Google Scholar 

  10. 10.

    Kawasaki M, Langdon TG (2011) Developing superplasticity and a deformation mechanism map for the Zn–Al eutectoid alloy processed by high-pressure torsion. Mater Sci Eng A528:6140–6145

    Article  Google Scholar 

  11. 11.

    Kawasaki M, Foissey J, Langdon TG (2013) Development of hardness homogeneity and superplastic behavior in an aluminum–copper eutectic alloy processed by high-pressure torsion. Mater Sci Eng A561:118–125

    Article  Google Scholar 

  12. 12.

    Kawasaki M, Langdon TG (2008) The significance of strain reversals during processing by high-pressure torsion. Mater Sci Eng A498:341–348

    Article  Google Scholar 

  13. 13.

    Figueiredo RB, Cetlin PR, Langdon TG (2011) Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion. Mater Sci Eng A528:8198–8204

    Article  Google Scholar 

  14. 14.

    Figueiredo RB, Pereira PHR, Aguilar MTP, Cetlin PR, Langdon TG (2012) Using finite element modeling to examine the temperature distribution in quasi-constrained high-pressure torsion. Acta Mater 60:3190–3198

    Article  Google Scholar 

  15. 15.

    Loucif A, Figueiredo RB, Kawasaki M, Baudin T, Brisset F, Chemam R, Langdon TG (2012) Effect of aging on microstructural development in an Al–Mg–Si alloy processed by high-pressure torsion. J Mater Sci 47:7815–7820. doi:10.1007/s10853-012-6400-8

    Article  Google Scholar 

  16. 16.

    Kawasaki M (2014) Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion. J Mater Sci 49:18–34. doi:10.1007/s10853-013-7687-9

    Article  Google Scholar 

  17. 17.

    Kawasaki M, Figueiredo RB, Huang Y, Langdon TG (2014) Interpretation of hardness evolution in metals processed by high-pressure torsion. J Mater Sci 49:6586–6596. doi:10.1007/s10853-014-8262-8

    Article  Google Scholar 

  18. 18.

    Lee DJ, Yoon EY, Park LJ, Kim HS (2012) The dead metal zone in high-pressure torsion. Scripta Mater 67:384–387

    Article  Google Scholar 

  19. 19.

    Pereira PHR, Figueiredo RB, Cetlin PR, Langdon TG (2015) An examination of the elastic distortion of anvils in high-pressure torsion. Mater Sci Eng A 631:201–208

    Article  Google Scholar 

  20. 20.

    Wang J, Kang S-B, Kim H-W, Horita Z (2002) Lamellae deformation and structural evolution in an Al–33% Cu eutectic alloy during equal-channel angular pressing. J Mater Sci 37:5223–5227. doi:10.1023/A:1021048202055

    Article  Google Scholar 

  21. 21.

    Langdon TG (2009) Seventy-five years of superplasticity: historic developments and new opportunities. J Mater Sci 44:5998–6010. doi:10.1007/s10853-009-3780-5

    Article  Google Scholar 

  22. 22.

    Langdon TG (1982) Fracture processes in superplastic flow. Metal Sci 16:175–183

    Article  Google Scholar 

  23. 23.

    Chokshi AH, Langdon TG (1987) The activation energy for superplastic deformation in the Al–33% Cu eutectic alloy. Scripta Metall 21:1669–1673

    Article  Google Scholar 

  24. 24.

    Chokshi AH, Langdon TG (1988) The mechanical properties of the superplastic Al–33 Pct Cu eutectic alloy. Metall Trans A 19A:2487–2496

    Article  Google Scholar 

  25. 25.

    Chokshi AH, Langdon TG (1989) Cavitation and fracture in the superplastic Al–33% Cu eutectic alloy. J Mater Sci 24:143–153. doi:10.1007/BF00660946

    Article  Google Scholar 

  26. 26.

    Chokshi AH, Langdon TG (1989) Superplasticity in Al-33Cu eutectic alloy in as extruded condition. Mater Sci Tech 5:435

    Article  Google Scholar 

  27. 27.

    Kawasaki M, Langdon TG (2007) Principles of superplasticity in ultrafine-grained materials. J Mater Sci 42:1782–1796. doi:10.1007/s10853-006-0954-2

    Article  Google Scholar 

  28. 28.

    Loucif A, Figueiredo RB, Baudin T, Brisset F, Langdon TG (2010) Microstructural evolution in an Al-6061 alloy processed by high-pressure torsion. Mater Sci Eng A527:4864–4869

    Article  Google Scholar 

  29. 29.

    Sabbaghianrad S, Kawasaki M, Langdon TG (2012) Microstructural evolution and the mechanical properties of an aluminum alloy processed by high-pressure torsion. J Mater Sci 47:7789–7795. doi:10.1007/s10853-012-6524-x

    Article  Google Scholar 

  30. 30.

    El-Danaf E, Kawasaki M, El-Rayes M, Baig M, Ali Mohammed J, Langdon TG (2014) Mechanical properties and microstructure evolution in an aluminum 6082 alloy processed by high-pressure torsion. J Mater Sci 49:6597–6607. doi:10.1007/s10853-014-8266-4

    Article  Google Scholar 

  31. 31.

    Wongsa-Ngam J, Kawasaki M, Langdon TG (2012) Achieving homogeneity in a Cu-Zr alloy processed by high-pressure torsion. J Mater Sci 47:7782–7788. doi:10.1007/s10853-012-6587-8

    Article  Google Scholar 

  32. 32.

    Wongsa-Ngam J, Kawasaki M, Langdon TG (2013) A comparison of microstructures and mechanical properties in a Cu–Zr alloy processed using different SPD techniques. J Mater Sci 48:4653–4660. doi:10.1007/s10853-012-7072-0

    Article  Google Scholar 

  33. 33.

    Khereddine AY, Hadj Larbi F, Azzeddine H, Baudin T, Brisset F, Helbert A-L, Mathon M-H, Kawasaki M, Bradai D, Langdon TG (2013) Microstructures and textures of a Cu–Ni–Si alloy processed by high-pressure torsion. J Alloys Compds 574:361–367

    Article  Google Scholar 

  34. 34.

    Zhao YH, Guo YZ, Wei Q, Dangelewicz AM, Xu C, Zhu YT, Langdon TG, Zhou YZ, Lavernia EJ (2008) Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu. Scripta Mater 59:627–630

    Article  Google Scholar 

  35. 35.

    Zhao YH, Guo YZ, Wei Q, Topping TD, Dangelewicz AM, Zhu YT, Langdon TG, Lavernia EJ (2009) Influence of specimen dimensions and strain measurement methods on tensile stress-strain curves. Mater Sci Eng A525:68–77

    Article  Google Scholar 

  36. 36.

    Langdon TG (2006) Grain boundary sliding revisited: developments in sliding over four decades. J Mater Sci 41:597–609. doi:10.1007/s10853-006-6476-0

    Article  Google Scholar 

  37. 37.

    Ishikawa H, Mohamed FA, Langdon TG (1975) The influence of strain rate on ductility in the Zn-22% Al eutectoid. Philos Mag 32:1269–1271

    Article  Google Scholar 

  38. 38.

    Vorhauer A, Pippan R (2004) On the homogeneity of deformation by high pressure torsion. Scripta Mater 51:921–925

    Article  Google Scholar 

  39. 39.

    Xu C, Horita Z, Langdon TG (2007) The evolution of homogeneity in processing by high-pressure torsion. Acta Mater 55:203–212

    Article  Google Scholar 

  40. 40.

    Kawasaki M, Ahn B, Langdon TG (2010) Significance of strain reversals in a two-phase alloy processed by high-pressure torsion. Mater Sci Eng A527:7008–7016

    Article  Google Scholar 

  41. 41.

    Xu C, Horita Z, Langdon TG (2007) The processing of ultrafine-grained materials using high-pressure torsion. Mater Sci Forum 558–559:1283–1294

    Article  Google Scholar 

  42. 42.

    Harai Y, Ito Y, Horita Z (2008) High-pressure torsion using ring specimens. Scripta Mater 58:469–482

    Article  Google Scholar 

  43. 43.

    Ito Y, Horita Z (2009) Microstructural evolution in pure aluminum processed by high-pressure torsion. Mater Sci Eng A503:32–36

    Article  Google Scholar 

  44. 44.

    Xu C, Langdon TG (2009) Three-dimensional representations of hardness distributions after processing by high-pressure torsion. Mater Sci Eng A503:71–74

    Article  Google Scholar 

  45. 45.

    Kawasaki M, Ahn B, Langdon TG (2010) Effect of strain reversals on the processing of high-purity aluminum by high-pressure torsion. J Mater Sci 45:4583–4593. doi:10.1007/s10853-010-4420-9

    Article  Google Scholar 

  46. 46.

    Xu C, Horita Z, Langdon TG (2010) Microstructural evolution in pure aluminum in the early stages of processing by high-pressure torsion. Mater Trans 51:2–7

    Article  Google Scholar 

  47. 47.

    Kawasaki M, Figueiredo RB, Langdon TG (2011) An investigation of hardness homogeneity throughout disks processed by high-pressure torsion. Acta Mater 59:308–316

    Article  Google Scholar 

  48. 48.

    Kawasaki M, Figueiredo RB, Langdon TG (2012) Twenty-five years of severe plastic deformation: recent developments in evaluating the degree of homogeneity through the thickness of disks processed by high-pressure torsion. J Mater Sci 47:7719–7725. doi:10.1007/s10853-012-6507-y

    Article  Google Scholar 

  49. 49.

    Edalati K, Horita Z (2011) Significance of homologous temperature in softening behavior and grain size of pure metals processed by high-pressure torsion. Mater Sci Eng A528:7514–7523

    Article  Google Scholar 

  50. 50.

    Edalati K, Yamamoto A, Horita Z, Ishihara T (2011) High-pressure torsion of pure magnesium: Evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain. Scripta Mater 64:880–883

    Article  Google Scholar 

  51. 51.

    Kawasaki M, Ahn B, Langdon TG (2010) Microstructural evolution in a two-phase alloy processed by high-pressure torsion. Acta Mater 58:919–930

    Article  Google Scholar 

  52. 52.

    Zhang NX, Kawasaki M, Huang Y, Langdon TG (2013) Microstructural evolution in two-phase alloys processed by high-pressure torsion. J Mater Sci 48:4582–4591. doi:10.1007/s10853-012-7087-6

    Article  Google Scholar 

  53. 53.

    Cho T-S, Lee H-J, Ahn B, Kawasaki M, Langdon TG (2014) Microstructural evolution and mechanical properties in a Zn–Al eutectoid alloy processed by high-pressure torsion. Acta Mater 72:67–79

    Article  Google Scholar 

  54. 54.

    Alhamidi A, Edalati K, Horita Z, Hirosawa S, Matsuda K, Terada D (2014) Softening by severe plastic deformation and hardening by annealing of aluminum–zinc alloy: significance of elemental and spinodal decompositions. Mater Sci Eng A610:17–27

    Article  Google Scholar 

  55. 55.

    Song Y, Wang W, Gao D, Yoon EY, Lee DJ, Lee CS, Kim HS (2013) Hardness and microstructure of interstitial free steels in the early stage of high-pressure torsion. J Mater Sci 48:4698–4704. doi:10.1007/s10853-012-7031-9

    Article  Google Scholar 

  56. 56.

    Cao Y, Wang YB, Figueiredo RB, Chang L, Liao XZ, Kawasaki M, Zheng WL, Ringer SP, Langdon TG, Zhu YT (2011) Three-dimensional shear-strain patterns induced by high-pressure torsion and their impact on hardness evolution. Acta Mater 59:3903–3914

    Article  Google Scholar 

  57. 57.

    Matoso MS, Figueiredo RB, Kawasaki M, Santos DB, Langdon TG (2013) Processing a twinning-induced plasticity steel by high-pressure torsion. Scripta Mater 67:649–652

    Article  Google Scholar 

  58. 58.

    Jeong HJ, Yoon EY, Lee DJ, Kim NJ, Lee S, Kim HS (2012) Nanoindentation analysis for local properties of ultrafine grained copper processed by high pressure torsion. J Mater Sci 47:7828–7834. doi:10.1007/s10853-012-6540-x

    Article  Google Scholar 

  59. 59.

    Hegedűs Z, Gubicza J, Kawasaki M, Chinh NQ, Lábár JL, Langdon TG (2013) Stability of the ultrafine-grained microstructure in silver processed by ECAP and HPT. J Mater Sci 48:4637–4645. doi:10.1007/s10853-012-7124-5

    Article  Google Scholar 

  60. 60.

    Figueiredo RB, Langdon TG (2011) Development of structural heterogeneities in a magnesium alloy processed by high-pressure torsion. Mater Sci Eng A528:4500–4506

    Article  Google Scholar 

  61. 61.

    Figueiredo RB, Aguilar MTP, Cetlin PR, Langdon TG (2011) Deformation heterogeneity on the cross-sectional planes of a magnesium alloy processed by high-pressure torsion. Metall Mater Trans A 42A:3013–3021

    Article  Google Scholar 

  62. 62.

    Al-Zubaydi A, Figueiredo RB, Huang Y, Langdon TG (2013) Structural and hardness inhomogeneities in Mg–Al–Zn alloys processed by high-pressure torsion. J Mater Sci 48:4661–4670. doi:10.1007/s10853-013-7176-1

    Article  Google Scholar 

  63. 63.

    Nakai M, Niinomi M, Hieda J, Yilmazer H, Todaka Y (2013) Heterogeneous grain refinement of biomedical Ti–29Nb–13Ta–4.6Zr alloy through high-pressure torsion. Sci Iran 20:1067–1070

    Google Scholar 

  64. 64.

    Sakai G, Nakamura K, Horita Z, Langdon TG (2005) Developing high-pressure torsion for use with bulk samples. Mater Sci Eng A406:268–273

    Article  Google Scholar 

  65. 65.

    Hohenwarter A, Bachmaier A, Gludovatz B, Scheriau S, Pippan R (2009) Technical parameters affecting grain refinement by high pressure torsion. Int J Mater Res 100:1653–1661

    Article  Google Scholar 

  66. 66.

    Figueiredo RB, Aguilar MTP, Cetlin PR, Langdon TG (2012) Analysis of plastic flow during high-pressure torsion. J Mater Sci 47:7807–7814. doi:10.1007/s10853-012-6506-z

    Article  Google Scholar 

  67. 67.

    Kawasaki M, Langdon TG (2013) The many facets of deformation mechanism mapping and the application to nanostructured materials. J Mater Res 28:1827–1834

    Article  Google Scholar 

  68. 68.

    Langdon TG (2002) Creep at low stresses: An evaluation of diffusion creep and Harper-Dorn creep as viable creep mechanisms. Metall Mater Trans A 33A:249–259

    Article  Google Scholar 

  69. 69.

    Langdon TG (1994) A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall Mater 42:2437–2443

    Article  Google Scholar 

  70. 70.

    Kawasaki M, Balasubramanian N, Langdon TG (2011) Flow mechanisms in ultrafine-grained metals with an emphasis on superplasticity. Mater Sci Eng, A 528:6624–6629

    Article  Google Scholar 

  71. 71.

    Nabarro FRN (1948) Report of a Conference on Strength of Solids. The Physical Society, London, p 75

  72. 72.

    Herring C (1950) Diffusional viscosity of a polycrystalline solid. J Appl Phys 21:437–444

    Article  Google Scholar 

  73. 73.

    Coble RL (1963) A model for boundary diffusion controlled creep in polycrystalline materials. J Appl Phys 34:1679–1681

    Article  Google Scholar 

  74. 74.

    Rai G, Grant NJ (1975) On the measurements of superplasticity in an Al-Cu alloy. Metall Trans A 6A:385–390

    Article  Google Scholar 

  75. 75.

    Mohamed FA, Langdon TG (1975) Creep at low stress levels in the superplastic Zn-22% Al eutectoid. Acta Metall 23:117–124

    Article  Google Scholar 

  76. 76.

    Mohamed FA, Langdon TG (1975) Creep behaviour in the superplastic Pb–62% Sn eutectic. Phil Mag 32:697–709

    Article  Google Scholar 

  77. 77.

    Mohamed FA, Langdon TG (1976) Deformation mechanism maps for superplastic materials. Scripta Metall 10:759–762

    Article  Google Scholar 

  78. 78.

    Kawasaki M, Lee S, Langdon TG (2009) Constructing a deformation mechanism map for a superplastic Pb–Sn alloy processed by equal-channel angular pressing. Scripta Mater 61:963–966

    Article  Google Scholar 

  79. 79.

    Kawasaki M, Mendes Ade A, Sordi VL, Ferrante M, Langdon TG (2011) Achieving superplastic properties in a Pb–Sn eutectic alloy processed by equal-channel angular pressing. J Mater Sci 46:155–160. doi:10.1007/s10853-010-4889-2

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NRF Korea funded by MoE under Grant No. NRF-2014R1A1A2057697 (MK), in part by the National Science Foundation of the United States under Grant No. DMR-1160966 and in part by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS (TGL).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Megumi Kawasaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kawasaki, M., Lee, H. & Langdon, T.G. Microstructural homogeneity and superplastic behavior in an aluminum–copper eutectic alloy processed by high-pressure torsion. J Mater Sci 50, 6700–6712 (2015). https://doi.org/10.1007/s10853-015-9224-5

Download citation

Keywords

  • Eutectic Alloy
  • Vertical Cross Section
  • Disk Thickness
  • Superplastic Flow
  • Severe Plastic Deformation Processing