Advertisement

Journal of Materials Science

, Volume 50, Issue 20, pp 6688–6699 | Cite as

Relationship between microstructure and mechanical properties in acid-treated carbon nanotube-reinforced alumina composites

  • Keiichi ShirasuEmail author
  • Go Yamamoto
  • Yo Nozaka
  • Weili Wang
  • Toshiyuki Hashida
Original Paper

Abstract

Alumina composites reinforced with multiwalled carbon nanotubes (MWCNTs) at up to 3.7 vol% are prepared by a precursor method followed by a spark plasma sintering. We systematically and quantitatively investigate the effects of acid-treatment time of the MWCNTs on not only bending strength and fracture toughness of the composites but also on the mechanical strength and dispersibility of the MWCNTs, the grain size of the alumina matrix, and the interfacial strength between MWCNT and alumina. The main objective of this study is to evaluate how these parameters influence the mechanical properties with the aid of multiple regression analysis. We demonstrate that the matrix grain size, the mechanical strength of the MWCNTs, and the interfacial strength have little impact on the mechanical properties for the composites prepared in this study. On the other hand, the dispersibility of MWCNTs has the significant influence on the mechanical properties. Both the dispersibility of the MWCNTs and the mechanical properties of the composites increase as the acid-treatment time increases up to 2 h at low MWCNT content (0.9 vol%). Conversely, at a higher amount of MWCNTs, the degradation in the mechanical properties is shown to be associated with the deterioration of MWCNTs’ dispersibility. As MWCNT agglomerates are anticipated to act as imperfections, they may override the effects of the strength of MWCNTs, matrix grain size, and interfacial strength. By means of the multiple regression analysis, we quantitatively show that improving MWCNTs’ dispersibility is one of the most important factors in enhancing the mechanical properties of MWCNT/alumina composites.

Keywords

Fracture Toughness Spark Plasma Sinter Alumina Matrix Interfacial Strength Dispersion Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank Dr. T. Miyazaki of the Technical Division, the School of Engineering, Tohoku University, for technical assistance in the TEM analysis. Dr. M. Watanabe, Industry Creation Hatchery Center, Tohoku University, is gratefully appreciated for his help in multiple regression analysis. This research was partially supported by the Grant-in-Aid for Scientific Research (S) 21226004 and Grant-in-Aid for Japan Society for the Promotion of Science (JSPS) 243582 and 2402358. This work was performed under the inter-university cooperative research program of the Advanced Research Center of Metallic Glasses, the Institute for Materials Research, Tohoku University.

Supplementary material

10853_2015_9223_MOESM1_ESM.docx (5.1 mb)
Supplementary material 1 (DOCX 5256 kb)

References

  1. 1.
    Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84(24):5552–5555CrossRefGoogle Scholar
  2. 2.
    Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453):637–640CrossRefGoogle Scholar
  3. 3.
    Mielke SL, Troya D, Zhang S, Li JL, Xiao S, Car R, Ruoff RS (2004) The role of vacancy defects and holes in the fracture of carbon nanotubes. Chem Phys Lett 390:413–420CrossRefGoogle Scholar
  4. 4.
    Barber AH, Andrews R, Schadler LS, Wagner HD (2005) On the tensile strength distribution of multiwalled carbon nanotubes. Appl Phys Lett 87(20):203106CrossRefGoogle Scholar
  5. 5.
    Barber AH, Kaplan-Ashiri I, Cohen SR et al (2005) Stochastic strength of nanotubes: an appraisal of available data. Compos Sci Technol 65:2380–2384CrossRefGoogle Scholar
  6. 6.
    Peng B, Locascio M, Zapol P, Li S, Mielke SL, Schatz GC, Espinosa HD (2008) Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nat Nanotechnol 3:626–631CrossRefGoogle Scholar
  7. 7.
    Yamamoto G, Suk JW, An JH, Piner RD, Hashida T, Takagi T, Ruoff RS (2010) The influence of nanoscale defects on the fracture of multi-walled carbon nanotubes under tensile loading. Diam Relat Mater 19(7–9):748–751CrossRefGoogle Scholar
  8. 8.
    Yamamoto G, Shirasu K, Nozaka Y, Sato Y, Takagi T, Hashida T (2014) Structure-property relationships in thermally annealed multi-walled carbon nanotubes. Carbon 66:219–226CrossRefGoogle Scholar
  9. 9.
    Iijima S, Brabec C, Maiti A, Bernholc J (1996) Structural flexibility of carbon nanotubes. J Chem Phys 104(5):2089–2095CrossRefGoogle Scholar
  10. 10.
    Falvo MR, Clary GJ, Taylor RM, Chi V, Brooks FP, Washburn S (1997) Bending and buckling of carbon nanotubes under large strain. Nature 389:582–584CrossRefGoogle Scholar
  11. 11.
    Palaci I, Fedrigo S, Brune H, Kinke C, Chen M, Riedo E (2005) Radial elasticity of multiwalled carbon nanotubes. Phys Rev Lett 94(17):175502CrossRefGoogle Scholar
  12. 12.
    Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401CrossRefGoogle Scholar
  13. 13.
    Cho J, Boccaccini AR, Shaffer MSP (2009) Ceramic matrix composites containing carbon nanotubes. J Mater Sci 44(8):1934–1951. doi: 10.1007/s10853-009-3262-9 CrossRefGoogle Scholar
  14. 14.
    Zapata-Solvas E, Gómez-García D, Domínguez-Rodríguez A (2012) Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites. J Eur Ceram Soc 32:3001–3020CrossRefGoogle Scholar
  15. 15.
    Laurent Ch, Peigney A, Dumortier O, Rousset A (1998) Carbon nanotubes-Fe-alumina nanocomposites. Part II: microstructure and mechanical properties of the hot-pressed composites. J Eur Ceram Soc 18:2005–2013CrossRefGoogle Scholar
  16. 16.
    Peigney A, Laurent Ch, Flahaut E, Rousset A (2000) Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram Int 26:677–683CrossRefGoogle Scholar
  17. 17.
    Zhan G-D, Kuntz JD, Wan J, Mukherjee AK (2003) Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater 2:38–42CrossRefGoogle Scholar
  18. 18.
    Boccaccini AR, Acevedo DR, Brusatin G, Colombo P (2005) Borosilicate glass matrix composites containing multi-wall carbon nanotubes. J Eur Ceram Soc 25(9):1515–1523CrossRefGoogle Scholar
  19. 19.
    Ye F, Liu LM, Wang YJ, Zhou Y, Peng B, Meng QC (2006) Preparation and mechanical properties of carbon nanotube reinforced barium aluminosilicate glass-ceramic composites. Scr Mater 55(10):911–914CrossRefGoogle Scholar
  20. 20.
    Jiang DT, Thomson K, Kuntz JD, Ager JW, Mukherjee AK (2007) Effect of sintering temperature on a single-wall carbon nanotube toughened alumina-based nanocomposite. Scr Mater 56:959–962CrossRefGoogle Scholar
  21. 21.
    Yamamoto G, Omori M, Yokomizo K, Hashida T (2008) Mechanical properties and structural characterization of carbon nanotube/alumina composites prepared by precursor method. Diam Relat Mater 17(7–10):1554–1557CrossRefGoogle Scholar
  22. 22.
    Yamamoto G, Omori M, Yokomizo K, Hashida T, Adachi K (2008) Structural characterization and frictional properties of carbon nanotube/alumina composites prepared by precursor method. Mater Sci Eng, B 148(1–3):265–269CrossRefGoogle Scholar
  23. 23.
    Yamamoto G, Omori M, Hashida T, Kimura H (2008) A novel structure for carbon nanotube reinforced alumina composites with improved mechanical properties. Nanotechnology 19(31):315708CrossRefGoogle Scholar
  24. 24.
    Estili M, Kawasaki A (2008) An approach to mass-producing individually alumina-decorated multi-walled carbon nanotubes with optimized and controlled compositions. Scr Mater 58(10):906–909CrossRefGoogle Scholar
  25. 25.
    Otieno G, Koos AA, Dillon F, Wallwork A, Grobert N, Todd RI (2010) Processing and properties of aligned multi-walled carbon nanotube/aluminoborosilicate glass composites made by sol-gel processing. Carbon 48(8):2212–2217CrossRefGoogle Scholar
  26. 26.
    Inam F, Yan HX, Jayaseelan DD, Pejis T, Reece MJ (2010) Electrically conductive alumina–carbon nanocomposites prepared by spark plasma sintering. J Eur Ceram Soc 30(2):153–157CrossRefGoogle Scholar
  27. 27.
    Ahmad I, Cao H, Chen H, Zhao H, Kennedy A, Zhu YQ (2009) Carbon nanotube toughened aluminium oxide nanocomposites. J Eur Ceram Soc 30:865–873CrossRefGoogle Scholar
  28. 28.
    Cho J, Inam F, Reece MJ, Chlup Z, Dlouhy I, Shaffer MSP, Boccaccini AR (2011) Carbon nanotubes: do they toughen brittle matrices? J Mater Sci 46(14):4770–4779. doi: 10.1007/s10853-011-5387-x CrossRefGoogle Scholar
  29. 29.
    Ueda N, Yamakami T, Yamaguchi T, Kitajima K, Usui Y, Aoki K, Endo M, Saito N, Taruta S (2012) Microstructure development and fracture toughness of acid-treated carbon nanofibers/alumina composites. J Ceram Soc Jpn 120(1408):560–568CrossRefGoogle Scholar
  30. 30.
    Estili M, Sakka Y, Kawasaki A (2013) Unprecedented simultaneous enhancement in strain tolerance, toughness and strength of Al2O3 ceramic by multiwall-type failure of a high loading of carbon nanotubes. Nanotechnology 24(15):155702CrossRefGoogle Scholar
  31. 31.
    Ahmad I, Unwin M, Cao H, Chen H, Zhao H, Kennedy A, Zhy YQ (2010) Multi-walled carbon nanotubes reinforced Al2O3 nanocomposites: mechanical properties and interfacial investigations. Compos Sci Technol 70(8):1199–1206CrossRefGoogle Scholar
  32. 32.
    Wei T, Fan Z, Luo G, Wei F (2008) A new structure for multi-walled carbon nanotubes reinforced alumina nanocomposite with high strength and toughness. Mater Lett 62:641–644CrossRefGoogle Scholar
  33. 33.
    Ning J, Zhang J, Pan Y, Guo J (2004) Surfactants assisted processing of carbon nanotube-reinforced SiO2 matrix composites. Ceram Int 30:63–67CrossRefGoogle Scholar
  34. 34.
    Morisada Y, Miyamoto Y, Takaura Y (2007) Mechanical properties of SiC composites incorporating SiC-coated multi-walled carbon nanotubes. Int J Refract Metals Hard Mater 25:322–327CrossRefGoogle Scholar
  35. 35.
    Peigney A, Garcia F, Estournès C et al (2010) Toughening and hardening in double-walled carbon nanotube/nanostructured magnesia composites. Carbon 48:1952–1960CrossRefGoogle Scholar
  36. 36.
    Wang WL, Yamamoto G, Shirasu K et al (2013) Microstructure and mechanical properties of multi-walled carbon nanotube/alumina composites prepared by a novel flocculation method. In: Proceedings of ECCM 2014: 16th European conference on composite materials, Seville, SpainGoogle Scholar
  37. 37.
    Kelly A, Tyson WR (1965) Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum. J Mech Phys Solids 13(6):329–350CrossRefGoogle Scholar
  38. 38.
    Curtin WA (1991) Theory of mechanical properties of ceramic-matrix composites. J Am Ceram Soc 74(11):2837–2845CrossRefGoogle Scholar
  39. 39.
    Li L, Xia ZH, Curtin WA, Yang YQ (2009) Molecular dynamics simulations of interfacial sliding in carbon-nanotube/diamond nanocomposites. J Am Ceram Soc 92:2331–2336CrossRefGoogle Scholar
  40. 40.
    Li L, Niu JB, Xia ZH et al (2011) Nanotube/matrix interfacial friction and sliding in composites with an amorphous carbon matrix. Scr Mater 65:1014–1017CrossRefGoogle Scholar
  41. 41.
    Nozaka Y, Wang W, Shirasu K et al (2014) Inclined slit-based pullout method for determining interfacial strength of multi-walled carbon nanotube–alumina composites. Carbon 78:439–445CrossRefGoogle Scholar
  42. 42.
    Shaffer MSP, Fan X, Windle AH (1998) Dispersion and packing of carbon nanotubes. Carbon 36(11):1603–1612CrossRefGoogle Scholar
  43. 43.
    Yamamoto G, Shirasu K, Nozaka Y et al (2014) Microstructure–property relationships in pressureless-sintered carbon nanotube alumina composites. Mater Sci Eng A 617:179–186CrossRefGoogle Scholar
  44. 44.
    Xia Z, Riester L, Curtin W et al (2004) Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater 52:931–944CrossRefGoogle Scholar
  45. 45.
    Nozaka Y, Yamamoto G, Shirasu K et al (2013) Evaluation of mechanical properties and microstructures of multi-walled carbon nanotube/alumina composites prepared by pressureless sintering. Trans Jpn Soc Mech Eng Part A 79:764–768CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Keiichi Shirasu
    • 1
    Email author
  • Go Yamamoto
    • 1
  • Yo Nozaka
    • 1
  • Weili Wang
    • 2
  • Toshiyuki Hashida
    • 1
  1. 1.Fracture and Reliability Research InstituteTohoku UniversitySendaiJapan
  2. 2.Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of EducationShandong UniversityJinanPeople’s Republic of China

Personalised recommendations