Journal of Materials Science

, Volume 50, Issue 20, pp 6668–6676 | Cite as

The effect of Ni(CH3COO)2 post-treatment on the charge dynamics in p-type NiO dye-sensitized solar cells

  • Qian Liu
  • Lifang Wei
  • Shuai Yuan
  • Xin Ren
  • Yin ZhaoEmail author
  • Zhuyi Wang
  • Meihong Zhang
  • Liyi ShiEmail author
  • Dongdong Li
Original Paper


The present work reports a simple Ni(CH3COO)2 post-treatment method, meanwhile represents a series of characterizations of bare and post-treated NiO photocathodes. The investigation enlightens the mechanisms responsible for NiO surface changes and its effects on the charge density, band-edge shifts, hole injection efficiency, interface recombination, transport, collection efficiency, and as the result influence on the photovoltaic devices’ performance. The primary results demonstrate that Ni(CH3COO)2 post-treatment can offer an effective way of decreasing surface NiO(OH) structure, resulting in diminishing the hole recombination, increasing the charge collection efficiency, and leading to 31.3 % increased photovoltaic performance.


Photovoltaic Performance Hole Injection Charge Carrier Density Charge Collection Efficiency Interface Recombination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the support of National Natural Science Foundation of China (51302164, 51472154, 51202138 and 51202140), Natural Science Foundation of Shanghai (13ZR1417100, 12ZR1410500), Shanghai Municipal Science and Technology Commission (13DZ2292100), Baoshan District Science and Technology Commission of Shanghai (bkw2013142), Professional and Technical Service Platform for Designing and Manufacturing of Advanced Composite Materials, Shanghai, and East China University of Science and Technology.

Supplementary material

10853_2015_9221_MOESM1_ESM.doc (216 kb)
Supplementary material 1 (DOC 216 kb)


  1. 1.
    Odobel F, Pellegrin Y, Gibson EA, Hagfeldt A, Smeigh AL, Hammarström L (2012) Recent advances and future directions to optimize the performances of p-type dye-sensitized solar cells. Coord Chem Rev 256:2414–2423CrossRefGoogle Scholar
  2. 2.
    Odobel F, Le Pleux L, Pellegrin Y, Blart E (2010) New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities. Acc Chem Res 43:1063–1071CrossRefGoogle Scholar
  3. 3.
    Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663CrossRefGoogle Scholar
  4. 4.
    Odobel F, Pellegrin Y (2013) Recent advances in the sensitization of wide bandgap nanostructured p-type semiconductors. Photovoltaic and photocatalytic applications. J Phys Chem Lett 4:2551–2564CrossRefGoogle Scholar
  5. 5.
    Perera IR, Daeneke T, Makuta S et al (2015) Application of the Tris(acetylacetonato)iron(III)/(II) redox couple in p-type dye-sensitized solar cells. Angew Chem Int Ed 54:3758–3762CrossRefGoogle Scholar
  6. 6.
    Renaud A, Chavillon B, Le Pleux L et al (2012) CuGaO2: a promising alternative for NiO in p-type dye solar cells. J Mater Chem 22:14353–14356CrossRefGoogle Scholar
  7. 7.
    Bian Z, Tachikawa T, Cui S-C, Fujitsuka M, Majima T (2012) Single-molecule charge transfer dynamics in dye-sensitized p-type NiO solar cells: influences of insulating Al2O3 layers. Chem Sci 3:370–379CrossRefGoogle Scholar
  8. 8.
    Zhang XL, Huang F, Nattestad A et al (2011) Enhanced open-circuit voltage of p-type DSC with highly crystalline NiO nanoparticles. Chem Commun 47:4808–4810CrossRefGoogle Scholar
  9. 9.
    Ting-Lung C, Chuen-Shii C, Der-Ho W, Chin-Min H (2011) Applications of p-type NiO in dye-sensitized solar cells. Adv Mater Res 239–242:1747–1750Google Scholar
  10. 10.
    Shi JF, Xu G, Miao L, Xu XQ (2011) P-type and pn-type dye-sensitized solar cells. Acta Phys Chim Sin 27:1287–1299Google Scholar
  11. 11.
    Huang Z, Natu G, Ji Z, He M, Yu M, Wu Y (2012) Probing the low fill factor of NiO p-type dye-sensitized solar cells. J Phys Chem C 116:26239–26246CrossRefGoogle Scholar
  12. 12.
    Peiris TA, Sagu JS, Wijayantha KG, Garcia-Canadas J (2014) Electrochemical determination of the density of states of nanostructured NiO films. ACS Appl Mater Interfaces 6:14988–14993Google Scholar
  13. 13.
    D’Amario L, Boschloo G, Hagfeldt A, Hammarstrom L (2014) Tuning of conductivity and density of states of NiO mesoporous films used in p-type DSSCs. J Phys Chem C 118:19556–19564CrossRefGoogle Scholar
  14. 14.
    Uehara S, Sumikura S, Suzuki E, Mori S (2010) Retardation of electron injection at NiO/dye/electrolyte interface by aluminium alkoxide treatment. Energy Environ Sci 3:641–644CrossRefGoogle Scholar
  15. 15.
    Natu G, Huang Z, Ji Z, Wu Y (2012) The effect of an atomically deposited layer of alumina on NiO in p-type dye-sensitized solar cells. Langmuir 28:950–956CrossRefGoogle Scholar
  16. 16.
    Sumikura S, Mori S, Shimizu S, Usami H, Suzuki E (2008) Syntheses of NiO nanoporous films using nonionic triblock co-polymer templates and their application to photo-cathodes of p-type dye-sensitized solar cells. J Photochem Photobiol A 199:1–7CrossRefGoogle Scholar
  17. 17.
    CHuang Z, Natu G, Ji Z, Hasin P, Wu Y (2011) p-Type dye-sensitized NiO solar cells: a study by electrochemical impedance spectroscopy. J Phys Chem C 115:25109–25114CrossRefGoogle Scholar
  18. 18.
    Wang Q, Ito S, Grätzel M et al (2006) Characteristics of high efficiency dye-sensitized solar cells. J Phys Chem B 110:25210–25221CrossRefGoogle Scholar
  19. 19.
    Bisquert J, Fabregat-Santiago F, Mora-Sero I, Garcia-Belmonte G, Gimenez S (2009) Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements. J Phys Chem C 113:17278–17290CrossRefGoogle Scholar
  20. 20.
    Peck MA, Langell MA (2012) Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS. Chem Mater 24:4483–4490CrossRefGoogle Scholar
  21. 21.
    Ratcliff EL, Meyer J, Steirer KX et al (2011) Evidence for near-surface NiOOH species in solution-processed NiOx selective interlayer materials: impact on energetics and the performance of polymer bulk heterojunction photovoltaics. Chem Mater 23:4988–5000CrossRefGoogle Scholar
  22. 22.
    Marrani AG, Novelli V, Sheehan S, Dowling DP, Dini D (2013) Probing the redox states at the surface of electroactive nanoporous NiO thin films. ACS Appl Mater Interfaces 6:143–152CrossRefGoogle Scholar
  23. 23.
    Fang Y, Ai X, Wang X, Wang Q, Huang J, Wu T (2014) Effect of TiOx compact layer with varied components on the performance of dye-sensitized solar cells. J Alloys Compd 594:211–216CrossRefGoogle Scholar
  24. 24.
    Grundmann M (2010) The physics of semiconductors. Springer, New YorkCrossRefGoogle Scholar
  25. 25.
    Chandiran AK, Nazeeruddin MK, Gratzel M (2014) The role of insulating oxides in blocking the charge carrier recombination in dye-sensitized solar cells. Adv Funct Mater 24:1615–1623CrossRefGoogle Scholar
  26. 26.
    Borgström M, Blart E, Boschloo G et al (2005) Sensitized hole injection of phosphorus porphyrin into NiO: toward new photovoltaic devices. J Phys Chem B 109:22928–22934CrossRefGoogle Scholar
  27. 27.
    Yang H, Guai GH, Guo C et al (2011) NiO/graphene composite for enhanced charge separation and collection in p-type dye sensitized solar cell. J Phys Chem C 115:12209–12215CrossRefGoogle Scholar
  28. 28.
    Bisquert J, Garcia-Belmonte G (2011) On voltage, photovoltage, and photocurrent in bulk heterojunction organic solar cells. J Phys Chem Lett 2:1950–1964CrossRefGoogle Scholar
  29. 29.
    Ito S, Liska P, Comte P et al (2005) Control of dark current in photoelectrochemical (TiO2/I–I3-)) and dye-sensitized solar cells. Chem Commun 34:4351–4353CrossRefGoogle Scholar
  30. 30.
    Chen SC, Kuo TY, Lin YC, Lin HC (2011) Preparation and properties of p-type transparent conductive Cu-doped NiO films. Thin Solid Films 519:4944–4947CrossRefGoogle Scholar
  31. 31.
    Docampo P, Tiwana P, Sakai N et al (2012) Unraveling the function of an MgO interlayer in both electrolyte and solid-state SnO2 based dye-sensitized solar cells. J Phys Chem C 116:22840–22846CrossRefGoogle Scholar
  32. 32.
    Sommeling PM, O’Regan BC, Haswell RR et al (2006) Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. J Phys Chem B 110:19191–19197CrossRefGoogle Scholar
  33. 33.
    Li L, Gibson EA, Qin P et al (2010) Double-layered NiO photocathodes for p-type DSSCs with record IPCE. Adv Mater 22:1759–1762CrossRefGoogle Scholar
  34. 34.
    Renaud A, Chavillon B, Cario L et al (2013) Origin of the black color of NiO used as photocathode in p-type dye-sensitized solar cells. J Phys Chem C 117:22478–22483CrossRefGoogle Scholar
  35. 35.
    Grosvenor AP, Biesinger MC, Smart RS, McIntyre NS (2006) New interpretations of XPS spectra of nickel metal and oxides. Surf Sci 600:1771–1779CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Qian Liu
    • 1
  • Lifang Wei
    • 1
  • Shuai Yuan
    • 1
  • Xin Ren
    • 1
  • Yin Zhao
    • 1
    Email author
  • Zhuyi Wang
    • 1
  • Meihong Zhang
    • 1
  • Liyi Shi
    • 1
    Email author
  • Dongdong Li
    • 2
  1. 1.Research Center of Nanoscience and NanotechnologyShanghai UniversityShanghaiChina
  2. 2.Division of Energy and Environment Research, Shanghai Advanced Research InstituteChinese Academy of SciencesShanghaiChina

Personalised recommendations