Skip to main content

Advertisement

Log in

Magnetic and magnetostrictive properties of aluminium substituted cobalt ferrite synthesized by citrate-gel method

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Structural, magnetic and magnetostrictive properties of sintered aluminium-substituted cobalt ferrite, CoAl x Fe2−x O4 (x = 0.0, 0.1, 0.20, 0.30), derived from nanosized powders synthesized by a citrate-gel method, have been investigated. The sample with x = 0.1 is found to exhibit higher maximum magnetostriction strain at relatively lower magnetic fields (230 ppm at 286 kA/m) than that obtained for the unsubstituted cobalt ferrite (217 ppm, at 446 kA/m). All the Al-substituted compositions show larger strain sensitivity (dλ/dH) at low magnetic fields compared to that for the unsubstituted cobalt ferrite. The variation of the magnetostriction coefficient as well as the strain sensitivity with Al content is likely to be due to the changes in the cation distribution in the tetrahedral and octahedral sites of the spinel lattice along with the associated changes in the magnetocrystalline anisotropy. The magnetostriction coefficient of x = 0.1 could be further enhanced to 306 ppm (at 220 kA/m) after a magnetic field annealing at 300 °C. A very high strain sensitivity of 4.5 × 10−9 m/A is obtained for the magnetically annealed sample, larger than that reported for any substituted cobalt ferrite samples. The combination of high magnetostriction coefficient and strain sensitivity is suitable for device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gibbs MRJ (2001) Modern trends in magnetostriction study and application. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  2. Engdahl G (2000) Hand book of giant magnetostrictive materials. Academic, San Diego

    Google Scholar 

  3. Slonczewski JC (1961) Anisotropy and magnetostriction in magnetic oxides. J Appl Phys 32:253S–263S

    Article  Google Scholar 

  4. Chen Y, Snyder JE, Schwichtenberg CR, Dennis KW, Macallum RW, Jiles DC (1999) Metal-bonded Co-ferrite composites for magnetostrictive torque sensor applications. IEEE Trans Magn 35:3652–3654

    Article  Google Scholar 

  5. Mohaideen KK, Joy PA (2012) Enhancement in the magnetostriction of sintered cobalt ferrite by making self-composites from nanocrystalline and bulk powders. ACS Appl Mater Interfaces 4:6421–6425

    Article  Google Scholar 

  6. Bhame SD, Joy PA (2008) Effect of sintering conditions and microstructure on the magnetostrictive properties of cobalt ferrite. J Am Ceram Soc 91:1976–1980

    Article  Google Scholar 

  7. Bhame SD, Joy PA (2007) Enhanced magnetostrictive properties of CoFe2O4 synthesized by an autocombustion method. Sens Actuators A 137:256–261

    Article  Google Scholar 

  8. Mohaideen KK, Joy PA (2013) Influence of initial particle size on the magnetostriction of sintered cobalt ferrite derived from nanocrystalline powders. J Magn Magn Mater 346:96–102

    Article  Google Scholar 

  9. Nlebedim IC, Snyder JE, Moses AJ, Jiles DC (2010) Dependence of the magnetic and magnetoelastic properties of cobalt ferrite on processing parameters. J Magn Magn Mater 322:3938–3942

    Article  Google Scholar 

  10. Nlebedim IC, Ranvah N, Williams PI, Anayi F, Melikhov Y, Snyder JE, Moses AJ, Jiles DC (2009) Influence of vacuum sintering on microstructure and magnetic properties of magnetostrictive cobalt ferrite. J Magn Magn Mater 321:2528–2532

    Article  Google Scholar 

  11. Muhammad A, Sato-Turtelli R, Kriegisch M, Grossinger R, Kubel F, Konegger T (2012) Large enhancement of magnetostriction due to compaction hydrostatic pressure and magnetic annealing in CoFe2O4. J Appl Phys 111:013918

    Article  Google Scholar 

  12. Nlebedim IC, Ranvah N, Williams PI, Anayi F, Melikhov Y, Snyder JE, Moses AJ, Jiles DC (2010) Effect of heat treatment on the magnetic and magnetoelastic properties of cobalt ferrite. J Magn Magn Mater 322:1929–1933

    Article  Google Scholar 

  13. Nlebedim IC, Jiles DC (2015) Suitability of cation substituted cobalt ferrite materials for magnetoelastic sensor applications. Smart Mater Struct 24:025006

    Article  Google Scholar 

  14. Song SH, Lo CCH, Lee SJ, Aldini ST, Snyder JE, Jiles DC (2007) Magnetic and magnetoelastic properties of Ga-substituted cobalt ferrite. J Appl Phys 101:09C517

    Google Scholar 

  15. Paulsen JA, Ring AP, Lo CCH, Snyder JE, Jiles DC (2005) Manganese-substituted cobalt ferrite magnetostrictive materials for magnetic stress sensor applications. J Appl Phys 97:044502

    Article  Google Scholar 

  16. Lee SJ, Lo CCH, Matlage PN, Song SH, Melikhov Y, Snyder JE, Jiles DC (2007) Magnetic and magnetoelastic properties of Cr-substituted cobalt ferrite. J Appl Phys 102:073910

    Article  Google Scholar 

  17. Rao GSN, Caltun OF, Rao KH, Rao BP, Wamocha HL, Hamdeh HH (2008) Influence of silicon and cobalt substitutions on magnetostriction coefficient of cobalt ferrite. Hyperfine Interact 184:179–184

    Article  Google Scholar 

  18. Mohaideen KK, Joy PA (2013) High magnetostriction coefficient of Mn substituted cobalt ferrite sintered from nanocrystalline powders and after magnetic field annealing. Curr Appl Phys 13:1697–1701

    Article  Google Scholar 

  19. Ranvah N, Nlebedim IC, Melikhov Y, Snyder JE, Williams PI, Moses AJ, Jiles DC (2009) Magnetic and magnetomechanical properties of CoAlxFe2−xO4 for stress sensor and actuator applications. IEEE Trans Magn 45:4120–4123

    Article  Google Scholar 

  20. Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31

    Article  Google Scholar 

  21. Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluoride. Acta Crystallogr B 25:925–946

    Article  Google Scholar 

  22. Somaiah N, Jayaraman TV, Joy PA, Das D (2012) Magnetic and magnetoelastic properties of Zn-doped cobalt ferrites CoFe2−xZnxO4 (x = 0, 0.1, 0.2 and 0.3). J Magn Magn Mater 324:2286–2291

    Article  Google Scholar 

  23. Nlebedim C, Hadimani RL, Prozorov R, Jiles DC (2013) Structure, magnetic, and magnetoelastic properties of magnesium substituted cobalt ferrite. J Appl Phys 113:17A928

    Google Scholar 

  24. Singhal S, Barthwal SK, Chandra K (2006) XRD, magnetic and Mossbauer spectral studies of nano size aluminium substituted cobalt ferrites CoAlxFe2−xO4. J Magn Magn Mater 306:233–240

    Article  Google Scholar 

  25. Sawatsky GA, Van der Woude F, Morrish AH (1968) Cation distributions in octahedral and tetrahedral sites of the ferrimagnetic spinel CoFe2O4. J Appl Phys 39:1204–1206

    Article  Google Scholar 

  26. Smith J, Wijin HPJ (1965) Ferrites. Philips Technical Library, Eindhoven

    Google Scholar 

  27. Chikazumi S (1997) Physics of ferromagnetism, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  28. Tachiki M (1960) Origin of the magnetic anisotropy energy of cobalt ferrite. Prog Theor Phys 23:1055–1072

    Article  Google Scholar 

  29. Bozorth RM, Tilden EF, Williams AJ (1955) Anisotropy and magnetostriction of some ferrites. Phys Rev 99:1788–1798

    Article  Google Scholar 

  30. Chen Y, Kriegermeier-Sutton BK, Snyder JE, Dennis KW, McCallum RW, Jiles DC (2001) Magnetomechanical effects under torsional strain in iron, cobalt and nickel. J Magn Magn Mater 236:131–138

    Article  Google Scholar 

  31. Lo CCH, Ring AP, Snyder JE, Jiles DC (2005) Improvement of magnetomechanical properties of cobalt ferrite by magnetic annealing. IEEE Trans Magn 41:3676–3678

    Article  Google Scholar 

  32. Zheng YX, Cao QQ, Zhang CL, Xuan HC, Wang LY, Wang DH, Du YW (2011) Study of uniaxial magnetism and enhanced magnetostriction in magnetic-annealed polycrystalline CoFe2O4. J Appl Phys 110:043908

    Article  Google Scholar 

Download references

Acknowledgements

P. N. Anantharamaiah is thankful to University Grant commission (UGC), India, for a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Joy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anantharamaiah, P.N., Joy, P.A. Magnetic and magnetostrictive properties of aluminium substituted cobalt ferrite synthesized by citrate-gel method. J Mater Sci 50, 6510–6517 (2015). https://doi.org/10.1007/s10853-015-9211-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9211-x

Keywords