Journal of Materials Science

, Volume 50, Issue 20, pp 6631–6641 | Cite as

Fabrication of vertical silicon nanowire arrays on three-dimensional micro-pyramid-based silicon substrate

  • Prashant Singh
  • Sanjay K. SrivastavaEmail author
  • M. Yameen
  • B. Sivaiah
  • Vijay Prajapati
  • P. Prathap
  • Subha Laxmi
  • B. P. Singh
  • Vandana
  • C. M. S. Rauthan
  • P. K. Singh
Original Paper


Recently, a lot of attention is being paid to combine silicon nanowires (SiNWs) and the conventional micro-pyramid silicon (µT-Si) structures leading to SiNWs/µT-Si binary structures for efficient light harvesting. We report large-area fabrication of vertical SiNWs array over three-dimensional micro-pyramid structured silicon substrate through silver (Ag)-assisted electroless wet chemical etching in aqueous HF and AgNO3 solution. The influence of AgNO3 concentration has been investigated over the formation of the SiNWs. Vertical SiNWs formation takes place for lower AgNO3 concentrations. For higher concentrations, random formation of NWs and depletion of the micro-pyramids is observed. The present study reveals strong influence of local morphology of micro-pyramids over NWs formation. The formation mechanism of such binary structures has been discussed in co-relation with dimensional features of the micro-pyramids and surface free energy. Such hierarchically textured binary structured silicon surfaces exhibit excellent light trapping properties reducing reflectance to as low as <3 % in broad spectral range. Further, such surfaces also have enhanced Raman spectra (~15-fold enhancement) as compared to only micro-pyramid Si surfaces, thereby having potential applications for photovoltaic devices as well as surface enhanced Raman spectroscopic investigations.


Silicon Solar Cell Anisotropic Etching Binary Structure Broad Spectral Range SiNW Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Present work is sponsored by the Council of Scientific & Industrial Research—Young Scientist Awardee (CSIR-YSA) Research project (Grant Code: OLP 142732; P-81-113). Partial financial support from the CSIR, India under CSIR-TAPSUN project (Grant Code: NWP-55) is also acknowledged. Prashant Singh is thankful to CSIR for the research fellowship.


  1. 1.
    Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389CrossRefGoogle Scholar
  2. 2.
    Yu R, Lin Q, Leung SF, Fan Z (2012) Nanomaterials and nanostructures for efficient light absorption and photovoltaics. Nano Energy 1:57–72CrossRefGoogle Scholar
  3. 3.
    Chen LJ (2007) Silicon nanowires: the key building block for future electronic devices. J Mater Chem 17:4639–4643CrossRefGoogle Scholar
  4. 4.
    Yang C, Barrelet CJ, Capasso F, Lieber CM (2006) Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors. Nano Lett 6:2929–2934CrossRefGoogle Scholar
  5. 5.
    Qian F, Gradecak S, Li Y, Wen CY, Lieber CM (2005) Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett 5:2287–2291CrossRefGoogle Scholar
  6. 6.
    Cui Y, Zhong Z, Wang D, Wang WU, Lieber CM (2003) High performance silicon nanowire field effect transistors. Nano Lett 3:149–153CrossRefGoogle Scholar
  7. 7.
    Singh S, Zack J, Kumar D, Srivastava SK, Govind Saluja D, Khan MA, Singh PK (2010) DNA hybridization on silicon nanowires. Thin Solid Films 519:1151–1155CrossRefGoogle Scholar
  8. 8.
    Peng KQ, Xu Y, Wu Y, Yan Y, Lee ST, Zu J (2005) Aligned single crystalline silicon nanowire arrays for photovoltaic applications. Small 1:1062–1067CrossRefGoogle Scholar
  9. 9.
    Tian B, Zheng X, Kempa TJ, Fang Y, Yu N, Yu G, Huang J, Lieber CM (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449:885–890CrossRefGoogle Scholar
  10. 10.
    Sivakov V, Andrä V, Gawlik A, Berger A, Plentz J, Falk F (2009) Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett 9:1549–1554CrossRefGoogle Scholar
  11. 11.
    Srivastava SK, Kumar D, Singh PK, Kar M, Kumar V, Husain M (2010) Excellent antireflection properties of vertical silicon nanowire arrays. Sol Energy Mater Sol Cells 94:1506–1511CrossRefGoogle Scholar
  12. 12.
    Kumar D, Srivastava SK, Singh PK, Husain M, Kumar V (2011) Fabrication of silicon nanowire arrays based solar cell with improved performance. Sol Energy Mater Sol Cells 95:215–218CrossRefGoogle Scholar
  13. 13.
    Kelzenberg MD, Boettcher SW, Petykiewicz JA, Turner-Evans DB, Putnam MC, Warren EL, Spurgeon JM, Briggs RM, Lewis NS, Atwater HA (2010) Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat Mater 9:239–244CrossRefGoogle Scholar
  14. 14.
    Hochbaum AI, Chen RK, Delgado RD, Liang WJ, Garnett EC, Najarian M, Majumdar A, Yang PD (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451:163–167CrossRefGoogle Scholar
  15. 15.
    Chan CK, Peng H, Liu GAO, Zhang XF, Huggins RA, Cui YI (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35CrossRefGoogle Scholar
  16. 16.
    Latu RL, Mouchet C, Cayron C, Rouviere E, Simonato JP (2008) Growth parameters and shape specific synthesis of silicon nanowires by the VLS method. J Nanopart Res 10:1287–1291CrossRefGoogle Scholar
  17. 17.
    Fuhrmann B, Leipner HS, Höche HR (2005) Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy. Nano Lett 5:2524–2527CrossRefGoogle Scholar
  18. 18.
    Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279:208–211CrossRefGoogle Scholar
  19. 19.
    Srivastava SK, Singh PK, Singh VN, Sood KN, Haranath D, Kumar V (2009) Large-scale synthesis, characterization and photoluminescence properties of amorphous silica nanowires by thermal evaporation of silicon monoxide. Phys E 41:1545–1549CrossRefGoogle Scholar
  20. 20.
    Kumar RR, Narasimha RK, Phan AR (2012) Growth of silicon nanowires by electron beam evaporation using indium catalyst. Mater Lett 66:110–112CrossRefGoogle Scholar
  21. 21.
    Schmitt SW, Schechtel F, Amkreutz D, Bashouti MY, Srivastava SK, Hoffmann B, Dieker C, Spiecker E, Rech B, Christiansen SH (2012) Nanowire arrays in multicrystalline silicon thin films on glass: a promising material for research and applications in nanotechnology. Nano Lett 12:4050–4054CrossRefGoogle Scholar
  22. 22.
    Schmitt SW, Brönstrup G, Shalev G, Srivastava SK, Bashouti MY, Döhler G, Christiansen S (2014) Probing photo-carrier collection efficiencies of individual silicon nanowires diodes on a wafer substrate. Nanoscale 6:7897–7902CrossRefGoogle Scholar
  23. 23.
    Peng KQ, Yan YJ, Gao SP, Zhu J (2003) Dendrite assisted growth of silicon nanowires in electroless metal deposition. Adv Funct Mater 13:127–132CrossRefGoogle Scholar
  24. 24.
    Zhang ML, Peng KQ, Fan X, Jie JS, Zhang RQ, Lee ST, Wong NB (2008) Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. J Phys Chem C 112:4444–4450CrossRefGoogle Scholar
  25. 25.
    Kumar D, Srivastava SK, Singh PK, Sood KN, Singh VN, Dilawar N, Husain M (2010) Room temperature growth of wafer-scale silicon nanowire arrays and their Raman characteristics. J Nanopart Res 12:2267–2276CrossRefGoogle Scholar
  26. 26.
    Srivastava SK, Kumar D, Vandana, Sharma M, Kumar R, Singh PK (2012) Silver catalyzed nano-texturing of silicon surfaces for solar cell applications. Sol Energy Mater Sol Cells 100:33–38CrossRefGoogle Scholar
  27. 27.
    Srivastava SK, Kumar D, Schmitt SW, Sood KN, Christiansen SH, Singh PK (2014) Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics. Nanotechnology 25:175601CrossRefGoogle Scholar
  28. 28.
    Huang ZP, Geyer N, Werner P, Boor JD, Gösele U (2011) Metal-assisted chemical etching of silicon: a review. Adv Mater 23:285–308CrossRefGoogle Scholar
  29. 29.
    Peng KQ, Hu JJ, Yan YJ, Wu Y, Fang H, Xu Y, Lee ST, Zhu J (2006) Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv Funct Mater 16:387–394CrossRefGoogle Scholar
  30. 30.
    Chang HC, Lai KY, Dai YA, Wang HH, Lin CA, He JH (2011) Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency. Energy Environ Sci 4:2863–2869CrossRefGoogle Scholar
  31. 31.
    Green MA (1995) Silicon solar cells: advanced principles and practice. Bridge, SydneyGoogle Scholar
  32. 32.
    Richards BS (2004) Comparison of TiO2 and other dielectric coatings for buried-contact solar cells: a review. Prog Photovolt 12:253–281CrossRefGoogle Scholar
  33. 33.
    Singh PK, Kumar R, Lal M, Singh SN, Das BK (2001) Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions. Sol Energy Mater Sol Cells 70:103–113CrossRefGoogle Scholar
  34. 34.
    Guo Z., Jung J-Y, Zhou K, Xiao Y, Jee S, Moiz SA, Lee J-H (2010) Optical properties of silicon nanowires array fabricated by metal-assisted electroless etching, Next Generation (Nano) Photonic and Cell Technologies for Solar Energy Conversion, edited by Loucas Tsakalakos, Proc. of SPIE Vol. 7772, 77721CGoogle Scholar
  35. 35.
    Rahman T, Navarro-Cía M, Fobelets K (2014) High density micro-pyramids with silicon nanowire array for photovoltaic applications. Nanotechnology 25:485202CrossRefGoogle Scholar
  36. 36.
    Lee IJ, Paik U, Park JG (2013) Solar cell implemented with silicon nanowires on pyramid-texture silicon surface. Sol Energy 91:256–262CrossRefGoogle Scholar
  37. 37.
    Chen CY, Li L, Wong CP (2014) Evolution of etching kinetics and directional transition of nanowires formed on pyramidal microtextures. Chem Asian J 9:93–99CrossRefGoogle Scholar
  38. 38.
    Liu Y, Das A, Lin Z, Cooper IB, Rohatgi A, Wonga CP (2014) Hierarchical robust textured structures for large scale self-cleaning black silicon solar cells. Nano Energy 3:127–133CrossRefGoogle Scholar
  39. 39.
    Jiang Y, Yang H, Cao W, Wang G, Ma H, Chang F (2014) Post-black etching on emitter to improve performance of multi-scale texture silicon solar cells. Appl Phys A 116:1409–1414CrossRefGoogle Scholar
  40. 40.
    Yang L, Liu Y, Wang Y, Li X, Chen W, Hua Y, Zhang Q, Fu J, Liang H, Mei Z, Du X (2014) Optimization of silicon pyramidal emitter by self-selective Ag-assisted chemical etching. RSC Adv 12:24458–24462CrossRefGoogle Scholar
  41. 41.
    Shuttleworth R (1950) Proc Phys Soc London Sect A 63:445CrossRefGoogle Scholar
  42. 42.
    Hesketh PJ, Ju C, Gowda S, Zanoria E, Danyluk S (1993) Surface free energy model of silicon anisotropic etching. J Electrochem Soc 140:1080–1085CrossRefGoogle Scholar
  43. 43.
    Liu YP, Lai T, Li HL, Wang Y, Mei ZX, Liang HL, Li ZL, Zhang FM, Wang WJ, Kuznetsov AY, Du XL (2012) Nanostructure formation and passivation of large-area black silicon for solar cell applications. Small 8:1392–1397CrossRefGoogle Scholar
  44. 44.
    Huang Z, Shimizu T, Senz S, Zhang Z, Geyer N, Gösele U (2010) Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon. J Phys Chem C 114:10683–10690CrossRefGoogle Scholar
  45. 45.
    Li BB, Yu DP, Zhang SL (1999) Raman spectral study of silicon nanowires. Phys Rev B 59:1645–1648CrossRefGoogle Scholar
  46. 46.
    Piscanec S, Cantoro M, Ferrari AC, Zapien JA, Lifshitz Y, Lee ST, Hofmann S, Robertson J (2003) Raman spectroscopy of silicon nanowires. Phys Rev B 68:241312CrossRefGoogle Scholar
  47. 47.
    Tian L, Ram KB, Ahmad I, Menon L, Holtz M (2005) Optical properties of a nanoporous array in silicon. J Appl Phys 97:026101–026103CrossRefGoogle Scholar
  48. 48.
    Liu FM, Ren B, Wu JH, Yan JW, Xue XF, Mao BW, Tian ZQ (2003) Enhanced-Raman scattering from silicon nanoparticle substrates. Chem Phys Lett 382:502–507CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Prashant Singh
    • 1
    • 3
  • Sanjay K. Srivastava
    • 1
    • 2
    • 3
    Email author
  • M. Yameen
    • 1
    • 3
  • B. Sivaiah
    • 1
    • 2
    • 3
  • Vijay Prajapati
    • 1
    • 3
  • P. Prathap
    • 1
    • 2
  • Subha Laxmi
    • 1
  • B. P. Singh
    • 1
    • 2
    • 3
  • Vandana
    • 1
    • 2
    • 3
  • C. M. S. Rauthan
    • 1
    • 2
  • P. K. Singh
    • 1
    • 2
    • 3
  1. 1.CSIR-National Physical Laboratory (CSIR-NPL)New DelhiIndia
  2. 2.CSIR-Network of Institute for Solar Energy (NISE)New DelhiIndia
  3. 3.Academy of Scientific & Innovative Research (AcSIR), CSIR-NPL CampusNew DelhiIndia

Personalised recommendations