Skip to main content

Advertisement

Log in

Fabrication of vertical silicon nanowire arrays on three-dimensional micro-pyramid-based silicon substrate

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Recently, a lot of attention is being paid to combine silicon nanowires (SiNWs) and the conventional micro-pyramid silicon (µT-Si) structures leading to SiNWs/µT-Si binary structures for efficient light harvesting. We report large-area fabrication of vertical SiNWs array over three-dimensional micro-pyramid structured silicon substrate through silver (Ag)-assisted electroless wet chemical etching in aqueous HF and AgNO3 solution. The influence of AgNO3 concentration has been investigated over the formation of the SiNWs. Vertical SiNWs formation takes place for lower AgNO3 concentrations. For higher concentrations, random formation of NWs and depletion of the micro-pyramids is observed. The present study reveals strong influence of local morphology of micro-pyramids over NWs formation. The formation mechanism of such binary structures has been discussed in co-relation with dimensional features of the micro-pyramids and surface free energy. Such hierarchically textured binary structured silicon surfaces exhibit excellent light trapping properties reducing reflectance to as low as <3 % in broad spectral range. Further, such surfaces also have enhanced Raman spectra (~15-fold enhancement) as compared to only micro-pyramid Si surfaces, thereby having potential applications for photovoltaic devices as well as surface enhanced Raman spectroscopic investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389

    Article  Google Scholar 

  2. Yu R, Lin Q, Leung SF, Fan Z (2012) Nanomaterials and nanostructures for efficient light absorption and photovoltaics. Nano Energy 1:57–72

    Article  Google Scholar 

  3. Chen LJ (2007) Silicon nanowires: the key building block for future electronic devices. J Mater Chem 17:4639–4643

    Article  Google Scholar 

  4. Yang C, Barrelet CJ, Capasso F, Lieber CM (2006) Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors. Nano Lett 6:2929–2934

    Article  Google Scholar 

  5. Qian F, Gradecak S, Li Y, Wen CY, Lieber CM (2005) Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett 5:2287–2291

    Article  Google Scholar 

  6. Cui Y, Zhong Z, Wang D, Wang WU, Lieber CM (2003) High performance silicon nanowire field effect transistors. Nano Lett 3:149–153

    Article  Google Scholar 

  7. Singh S, Zack J, Kumar D, Srivastava SK, Govind Saluja D, Khan MA, Singh PK (2010) DNA hybridization on silicon nanowires. Thin Solid Films 519:1151–1155

    Article  Google Scholar 

  8. Peng KQ, Xu Y, Wu Y, Yan Y, Lee ST, Zu J (2005) Aligned single crystalline silicon nanowire arrays for photovoltaic applications. Small 1:1062–1067

    Article  Google Scholar 

  9. Tian B, Zheng X, Kempa TJ, Fang Y, Yu N, Yu G, Huang J, Lieber CM (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449:885–890

    Article  Google Scholar 

  10. Sivakov V, Andrä V, Gawlik A, Berger A, Plentz J, Falk F (2009) Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett 9:1549–1554

    Article  Google Scholar 

  11. Srivastava SK, Kumar D, Singh PK, Kar M, Kumar V, Husain M (2010) Excellent antireflection properties of vertical silicon nanowire arrays. Sol Energy Mater Sol Cells 94:1506–1511

    Article  Google Scholar 

  12. Kumar D, Srivastava SK, Singh PK, Husain M, Kumar V (2011) Fabrication of silicon nanowire arrays based solar cell with improved performance. Sol Energy Mater Sol Cells 95:215–218

    Article  Google Scholar 

  13. Kelzenberg MD, Boettcher SW, Petykiewicz JA, Turner-Evans DB, Putnam MC, Warren EL, Spurgeon JM, Briggs RM, Lewis NS, Atwater HA (2010) Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat Mater 9:239–244

    Article  Google Scholar 

  14. Hochbaum AI, Chen RK, Delgado RD, Liang WJ, Garnett EC, Najarian M, Majumdar A, Yang PD (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451:163–167

    Article  Google Scholar 

  15. Chan CK, Peng H, Liu GAO, Zhang XF, Huggins RA, Cui YI (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35

    Article  Google Scholar 

  16. Latu RL, Mouchet C, Cayron C, Rouviere E, Simonato JP (2008) Growth parameters and shape specific synthesis of silicon nanowires by the VLS method. J Nanopart Res 10:1287–1291

    Article  Google Scholar 

  17. Fuhrmann B, Leipner HS, Höche HR (2005) Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy. Nano Lett 5:2524–2527

    Article  Google Scholar 

  18. Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279:208–211

    Article  Google Scholar 

  19. Srivastava SK, Singh PK, Singh VN, Sood KN, Haranath D, Kumar V (2009) Large-scale synthesis, characterization and photoluminescence properties of amorphous silica nanowires by thermal evaporation of silicon monoxide. Phys E 41:1545–1549

    Article  Google Scholar 

  20. Kumar RR, Narasimha RK, Phan AR (2012) Growth of silicon nanowires by electron beam evaporation using indium catalyst. Mater Lett 66:110–112

    Article  Google Scholar 

  21. Schmitt SW, Schechtel F, Amkreutz D, Bashouti MY, Srivastava SK, Hoffmann B, Dieker C, Spiecker E, Rech B, Christiansen SH (2012) Nanowire arrays in multicrystalline silicon thin films on glass: a promising material for research and applications in nanotechnology. Nano Lett 12:4050–4054

    Article  Google Scholar 

  22. Schmitt SW, Brönstrup G, Shalev G, Srivastava SK, Bashouti MY, Döhler G, Christiansen S (2014) Probing photo-carrier collection efficiencies of individual silicon nanowires diodes on a wafer substrate. Nanoscale 6:7897–7902

    Article  Google Scholar 

  23. Peng KQ, Yan YJ, Gao SP, Zhu J (2003) Dendrite assisted growth of silicon nanowires in electroless metal deposition. Adv Funct Mater 13:127–132

    Article  Google Scholar 

  24. Zhang ML, Peng KQ, Fan X, Jie JS, Zhang RQ, Lee ST, Wong NB (2008) Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. J Phys Chem C 112:4444–4450

    Article  Google Scholar 

  25. Kumar D, Srivastava SK, Singh PK, Sood KN, Singh VN, Dilawar N, Husain M (2010) Room temperature growth of wafer-scale silicon nanowire arrays and their Raman characteristics. J Nanopart Res 12:2267–2276

    Article  Google Scholar 

  26. Srivastava SK, Kumar D, Vandana, Sharma M, Kumar R, Singh PK (2012) Silver catalyzed nano-texturing of silicon surfaces for solar cell applications. Sol Energy Mater Sol Cells 100:33–38

    Article  Google Scholar 

  27. Srivastava SK, Kumar D, Schmitt SW, Sood KN, Christiansen SH, Singh PK (2014) Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics. Nanotechnology 25:175601

    Article  Google Scholar 

  28. Huang ZP, Geyer N, Werner P, Boor JD, Gösele U (2011) Metal-assisted chemical etching of silicon: a review. Adv Mater 23:285–308

    Article  Google Scholar 

  29. Peng KQ, Hu JJ, Yan YJ, Wu Y, Fang H, Xu Y, Lee ST, Zhu J (2006) Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv Funct Mater 16:387–394

    Article  Google Scholar 

  30. Chang HC, Lai KY, Dai YA, Wang HH, Lin CA, He JH (2011) Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency. Energy Environ Sci 4:2863–2869

    Article  Google Scholar 

  31. Green MA (1995) Silicon solar cells: advanced principles and practice. Bridge, Sydney

    Google Scholar 

  32. Richards BS (2004) Comparison of TiO2 and other dielectric coatings for buried-contact solar cells: a review. Prog Photovolt 12:253–281

    Article  Google Scholar 

  33. Singh PK, Kumar R, Lal M, Singh SN, Das BK (2001) Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions. Sol Energy Mater Sol Cells 70:103–113

    Article  Google Scholar 

  34. Guo Z., Jung J-Y, Zhou K, Xiao Y, Jee S, Moiz SA, Lee J-H (2010) Optical properties of silicon nanowires array fabricated by metal-assisted electroless etching, Next Generation (Nano) Photonic and Cell Technologies for Solar Energy Conversion, edited by Loucas Tsakalakos, Proc. of SPIE Vol. 7772, 77721C

  35. Rahman T, Navarro-Cía M, Fobelets K (2014) High density micro-pyramids with silicon nanowire array for photovoltaic applications. Nanotechnology 25:485202

    Article  Google Scholar 

  36. Lee IJ, Paik U, Park JG (2013) Solar cell implemented with silicon nanowires on pyramid-texture silicon surface. Sol Energy 91:256–262

    Article  Google Scholar 

  37. Chen CY, Li L, Wong CP (2014) Evolution of etching kinetics and directional transition of nanowires formed on pyramidal microtextures. Chem Asian J 9:93–99

    Article  Google Scholar 

  38. Liu Y, Das A, Lin Z, Cooper IB, Rohatgi A, Wonga CP (2014) Hierarchical robust textured structures for large scale self-cleaning black silicon solar cells. Nano Energy 3:127–133

    Article  Google Scholar 

  39. Jiang Y, Yang H, Cao W, Wang G, Ma H, Chang F (2014) Post-black etching on emitter to improve performance of multi-scale texture silicon solar cells. Appl Phys A 116:1409–1414

    Article  Google Scholar 

  40. Yang L, Liu Y, Wang Y, Li X, Chen W, Hua Y, Zhang Q, Fu J, Liang H, Mei Z, Du X (2014) Optimization of silicon pyramidal emitter by self-selective Ag-assisted chemical etching. RSC Adv 12:24458–24462

    Article  Google Scholar 

  41. Shuttleworth R (1950) Proc Phys Soc London Sect A 63:445

    Article  Google Scholar 

  42. Hesketh PJ, Ju C, Gowda S, Zanoria E, Danyluk S (1993) Surface free energy model of silicon anisotropic etching. J Electrochem Soc 140:1080–1085

    Article  Google Scholar 

  43. Liu YP, Lai T, Li HL, Wang Y, Mei ZX, Liang HL, Li ZL, Zhang FM, Wang WJ, Kuznetsov AY, Du XL (2012) Nanostructure formation and passivation of large-area black silicon for solar cell applications. Small 8:1392–1397

    Article  Google Scholar 

  44. Huang Z, Shimizu T, Senz S, Zhang Z, Geyer N, Gösele U (2010) Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon. J Phys Chem C 114:10683–10690

    Article  Google Scholar 

  45. Li BB, Yu DP, Zhang SL (1999) Raman spectral study of silicon nanowires. Phys Rev B 59:1645–1648

    Article  Google Scholar 

  46. Piscanec S, Cantoro M, Ferrari AC, Zapien JA, Lifshitz Y, Lee ST, Hofmann S, Robertson J (2003) Raman spectroscopy of silicon nanowires. Phys Rev B 68:241312

    Article  Google Scholar 

  47. Tian L, Ram KB, Ahmad I, Menon L, Holtz M (2005) Optical properties of a nanoporous array in silicon. J Appl Phys 97:026101–026103

    Article  Google Scholar 

  48. Liu FM, Ren B, Wu JH, Yan JW, Xue XF, Mao BW, Tian ZQ (2003) Enhanced-Raman scattering from silicon nanoparticle substrates. Chem Phys Lett 382:502–507

    Article  Google Scholar 

Download references

Acknowledgements

Present work is sponsored by the Council of Scientific & Industrial Research—Young Scientist Awardee (CSIR-YSA) Research project (Grant Code: OLP 142732; P-81-113). Partial financial support from the CSIR, India under CSIR-TAPSUN project (Grant Code: NWP-55) is also acknowledged. Prashant Singh is thankful to CSIR for the research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Srivastava, S.K., Yameen, M. et al. Fabrication of vertical silicon nanowire arrays on three-dimensional micro-pyramid-based silicon substrate. J Mater Sci 50, 6631–6641 (2015). https://doi.org/10.1007/s10853-015-9210-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9210-y

Keywords

Navigation