Journal of Materials Science

, Volume 50, Issue 20, pp 6601–6607 | Cite as

Density effect of gold nanodisks on the SERS intensity for a highly sensitive detection of chemical molecules

  • Jean-François BrycheEmail author
  • Raymond Gillibert
  • Grégory Barbillon
  • Mitradeep Sarkar
  • Anne-Lise Coutrot
  • Frédéric Hamouda
  • Abdelhanin Aassime
  • Julien Moreau
  • Marc Lamy de la Chapelle
  • Bernard Bartenlian
  • Michael Canva
Original Paper


Surface-enhanced Raman scattering (SERS) is a sensitive and widely used as spectroscopic technique for chemical and biological structure analysis. One of the keys to increase the sensitivity of SERS sensors is to use nanoparticles/nanostructures. Here, we report on the density effect of gold nanodisks on SERS intensity for a highly sensitive detection of chemical molecules. Various densities of gold nanodisks with a height of 30 nm on gold/glass substrate were fabricated by electron beam lithography in order to have a good uniformity and reproducibility. The evolution of the enhancement factor (EF) with nanodisk density was quantified and compared to numerical calculations. An EF as high as \(2.6 \times 10^{7}\) was measured for the nanodisk with a diameter of 110 nm and a periodicity of 150 nm which corresponds to the highest density (42.2 %).


SERS Enhancement Factor Electron Beam Lithography SERS Signal SERS Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge ANR P2N (ANR-12-NANO-0016) and the support of the French Government for partial funding of the project in which this work takes place. This work was partly supported by the French RENATECH network. IOGS/CNRS is also part of the European Network of Excellence in BioPhotonics, Photonics for Life, P4L.


  1. 1.
    Li W, Ding F, Hu J, Chou SY (2011) Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area. Opt Express 19(5):3925–3936CrossRefGoogle Scholar
  2. 2.
    Oh Y-J, Jeong K-H (2012) Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering. Adv Mater 24(17):2234–2237CrossRefGoogle Scholar
  3. 3.
    Guillot N, Lamy de la Chapelle M (2012) The electromagnetic effect in surface enhanced Raman scattering: enhancement optimization using precisely controlled nanostructures. J Quant Spectrosc Radiat Transf 113(18):51–63CrossRefGoogle Scholar
  4. 4.
    Barbillon G, Hamouda F, Held S, Gogol P, Bartenlian B (2010) Gold nanoparticles by soft UV nanoimprint lithography coupled to a lift-off process for plasmonic sensing of antibodies. Microelectron Eng 87:1001–1004CrossRefGoogle Scholar
  5. 5.
    Hamouda F, Sahaf H, Held S, Barbillon G, Gogol P, Moyen E, Aassime A, Moreau J, Canva M, Lourtioz J-M, Hanbϋcken M, Bartenlian B (2011) Large area nanopatterning by combined anodic aluminum oxide and soft UVNIL technologies for applications in biology. Microelectron Eng 88:2444–2446CrossRefGoogle Scholar
  6. 6.
    Lee SY, Jeon HC, Yang SM (2012) Robust plasmonic sensors based on hybrid nanostructures with facile tunability. J Mater Chem 22(28):5900–5913CrossRefGoogle Scholar
  7. 7.
    Camden JP, Dieringer J, Zhao J, Van Duyne RP (2008) Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc Chem Res 41(12):1653–1661CrossRefGoogle Scholar
  8. 8.
    McFarland AD, Young MA, Dieringer JA, Van Duyne RP (2005) Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J Phys Chem B 109(22):11279–11285CrossRefGoogle Scholar
  9. 9.
    Barbillon G, Bijeon JL, Plain J, Lamy de la Chapelle M, Adam PM, Royer P (2007) Electron beam lithography designed chemical nanosensors based on localized surface plasmon resonance. Surf Sci 601:5057–5061CrossRefGoogle Scholar
  10. 10.
    Yu Q, Guan P, Qin D, Golden G, Wallace PM (2008) Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett 8(7):1923–1928CrossRefGoogle Scholar
  11. 11.
    Brown RJC, Milton MJT (2008) Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS). J Raman Spectrosc 39:1313–1326CrossRefGoogle Scholar
  12. 12.
    Yu QM, Braswell S, Christin B, Xu JJ, Wallace PM, Gong H, Kaminsky D (2010) Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays. Nanotechnology 21(35):355301CrossRefGoogle Scholar
  13. 13.
    Gutierrez-Rivera L, Peters RF, Dew SK, Stepanova M (2013) Application of EBL fabricated nanostructured substrates for surface enhanced Raman spectroscopy detection of protein A in aqueous solution. J Vac Sci Technol B 31(6):06F901CrossRefGoogle Scholar
  14. 14.
    Zhang P, Yang S, Wang L, Zhao J, Zhu Z, Liu B, Zhong J, Sun X (2014) Large-scale uniform Au nanodisk arrays fabricated via X-ray interference lithography for reproducible and sensitive SERS substrate. Nanotechnology 25(24):245301CrossRefGoogle Scholar
  15. 15.
    Sarkar M, Besbes M, Moreau J, Bryche JF, Olivero A, Barbillon G, Coutrot AL, Bartenlian B, Canva M (2015) Hybrid plasmonic mode by resonant coupling of localized plasmons to propagating plasmons in a kretschmann configuration. ACS Photonics 2(2):237–245CrossRefGoogle Scholar
  16. 16.
    Carron KT, Hurley LG (1991) Axial and azimuthal angle determination with surface-enhanced Raman-spectroscopy: thiophenol on copper, silver, and gold metal-surfaces. J Phys Chem 95(24):9979–9984CrossRefGoogle Scholar
  17. 17.
    McMahon JM, Li S, Ausman LK, Schatz GC (2012) Modeling the effect of small gaps in surface-enhanced Raman spectroscopy. J Phys Chem C 116(2):1627–1637CrossRefGoogle Scholar
  18. 18.
    Gao H, McMahon JM, Lee MH, Henzie J, Gray SK, Schatz GC, Odom TW (2009) Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays. Opt Express 17(4):2334–2340CrossRefGoogle Scholar
  19. 19.
    Sharma B, Frontiera RR, Henry A-I, Ringe E, Van Duyne RP (2012) SERS: materials, applications, and the future. Mater Today 15(1–2):16–25CrossRefGoogle Scholar
  20. 20.
    Barchiesi D, Kessentini S, Guillot N, de la Chapelle ML, Grosges T (2013) Localized surface plasmon resonance in arrays of nano-gold cylinders: inverse problem and propagation of uncertainties. Opt. Express 21(2):2245–2262CrossRefGoogle Scholar
  21. 21.
    Caldwell JD, Glembocki O, Bezares FJ, Bassim ND, Rendell RW, Feygelson M, Ukaegbu M, Kasica R, Shirey L, Hosten C (2011) Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors. ACS Nano 5(5):4046–4055CrossRefGoogle Scholar
  22. 22.
    Cottat M, Lidgi-Guigui N, Tijunelyte I, Barbillon G, Hamouda F, Gogol P, Aassime A, Lourtioz JM, Bartenlian B, Lamy de la Chapelle M (2014) Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection. Nanoscale Res Lett 9:623CrossRefGoogle Scholar
  23. 23.
    Le Ru EC, Etchegoin PG (2013) Quantifying SERS enhancements. MRS Bull 38(8):631–640CrossRefGoogle Scholar
  24. 24.
    Saikin SK, Chu YZ, Rappoport D, Crozier KB, Aspuru-Guzik A (2010) Separation of electromagnetic and chemical contributions to surface-enhanced Raman spectra on nanoengineered plasmonic substrates. J Phys Chem Lett 1(18):2740–2746CrossRefGoogle Scholar
  25. 25.
    Le Ru EC, Grand J, Felidj N, Aubard J, Levi G, Honenau A, Krenn JR, Blackie E, Etchegoin PG (2008) Experimental verification of the SERS electromagnetic model beyond the \(|E|^4\) approximation: polarization effects. J Phys Chem C 112(22):8117–8121CrossRefGoogle Scholar
  26. 26.
    Hugonin JP, Besbes M, Lalanne P (2008) Hybridization of electromagnetic numerical methods through the G-matrix algorithm. Opt Lett 33(14):1590–1592CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jean-François Bryche
    • 1
    • 2
    Email author
  • Raymond Gillibert
    • 2
    • 3
    • 4
  • Grégory Barbillon
    • 1
  • Mitradeep Sarkar
    • 2
  • Anne-Lise Coutrot
    • 2
  • Frédéric Hamouda
    • 1
  • Abdelhanin Aassime
    • 1
  • Julien Moreau
    • 2
  • Marc Lamy de la Chapelle
    • 3
  • Bernard Bartenlian
    • 1
  • Michael Canva
    • 2
    • 5
  1. 1.Institut d’Electronique Fondamentale CNRS UMR 8622Université Paris-SudOrsay CedexFrance
  2. 2.Laboratoire Charles Fabry CNRS UMR 8501Institut d’Optique Graduate SchoolPalaiseau CedexFrance
  3. 3.Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d’Agents Thérapeutiques, CNRS UMR 7244Université Paris-NordBobigny CedexFrance
  4. 4.Horiba ScientificPalaiseauFrance
  5. 5.Laboratoire Nanotechnologie Nanosystème, LN2 UMI CNRS 3463, 3ITUniversité de SherbrookeSherbrooke Canada

Personalised recommendations