Advertisement

Journal of Materials Science

, Volume 50, Issue 20, pp 6586–6600 | Cite as

Importance of thermal gradient in the bitumen bees genesis

  • Manuel Mercé
  • Hassan Saadaoui
  • François Dole
  • Lionel Buisson
  • Ahmed Bentaleb
  • David Ruggi
  • Véronique SchmittEmail author
  • Rénal BackovEmail author
Original Paper

Abstract

Bitumen can be regarded as a complex colloidal suspension. Indeed, the heaviest molecules in bitumen, the asphaltenes, are known to self-associate to form solid particles suspended in a fluid called maltenes. Bitumen is also composed of a crystallizable fraction that partitions between asphaltenes and maltenes. This complex colloidal system exhibits peculiar patterns at their surface called “bees.” By varying the bitumen formulation and also tuning process parameters such as the temperature cooling rate, we demonstrate the role of the various components: asphaltenes, maltenes, and the crystallizable fraction on the bee existence and we evidence that the bee formation results from a complex coupling between different physico-chemical phenomena such as phase separation, crystallization, and buckling. We then propose a mechanism of bee genesis based on the thermal properties of the various fractions and especially on the heat capacity of both asphaltenes and maltenes. We demonstrate that a thermal gradient in the sample is required for the formation of bees and put into evidence the importance of kinetic aspects. We also discuss the bitumen general bulk properties.

Keywords

Atomic Force Microscopy Cool Rate Bitumen Cold Spot Differential Scanning Calorimetry Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank the Association Nationale Recherche Technologie (ANRT) for the financial support of this study through the CIFRE contract number 2012/1210.

Supplementary material

10853_2015_9202_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2443 kb)
10853_2015_9202_MOESM2_ESM.avi (7.3 mb)
Supplementary material 2 (AVI 7521 kb)
10853_2015_9202_MOESM3_ESM.avi (5.5 mb)
Supplementary material 3 (AVI 5594 kb)
10853_2015_9202_MOESM4_ESM.avi (10.7 mb)
Supplementary material 4 (AVI 10945 kb)

References

  1. 1.
    Connan J (1999) Use and trade of bitumen in antiquity and prehistory: molecular archaeology reveals secrets of past civilizations. Philos Trans R Soc Lond Ser B 354:33–50Google Scholar
  2. 2.
    Lay MG (1992) Ways of the world a history of the world’s roads and of the vehicles that used them. Rutgers University Press, New BrunswickGoogle Scholar
  3. 3.
    Lesueur D (2009) The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification. Adv Colloid Interface Sci 145:42–82CrossRefGoogle Scholar
  4. 4.
    EN 12597 (2000) Bitumen and bituminous bindersGoogle Scholar
  5. 5.
    Speight JG (2014) The chemistry and technology of petroleum, 5th ednGoogle Scholar
  6. 6.
    Corbett LW (1969) Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography, and densimetric characterization. Anal Chem 41:576–579CrossRefGoogle Scholar
  7. 7.
    Mullins OC, Sabbah H, Eyssautier J, Pomerantz AE, Barré L, Andrews AB, Ruiz-Morales Y, Mostowfi F, McFarlane R, Goual L, Lepkowicz R, Cooper T, Orbulescu J, Leblanc RM, Edwards J, Zare RN (2012) Advances in asphaltene science and the Yen-Mullins model. Energy Fuels 26:3986–4003CrossRefGoogle Scholar
  8. 8.
    Mullins OC (2010) The modified yen model†. Energy Fuels 24:2179–2207CrossRefGoogle Scholar
  9. 9.
    Eyssautier J, Hénaut I, Levitz P, Espinat D, Barré L (2012) Organization of asphaltenes in a vacuum residue: a small-angle X-ray scattering (SAXS)—viscosity approach at high temperatures. Energy Fuels 26:2696–2704CrossRefGoogle Scholar
  10. 10.
    Eyssautier J (2012) Characterization and modelling of petroleum residue in hydroprocessing conditions, PhD Thesis, PolytechniqueGoogle Scholar
  11. 11.
    Eyssautier J, Levitz P, Espinat D, Jestin J, Gummel JRM, Grillo I, Barré LC (2011) Insight into asphaltene nanoaggregate structure inferred by small angle neutron and X-ray scattering. J Phys Chem B 115:6827–6837Google Scholar
  12. 12.
    Luo P, Gu Y (2007) Effects of asphaltene content on the heavy oil viscosity at different temperatures. Fuel 86:1069–1078CrossRefGoogle Scholar
  13. 13.
    Qin Q, Farrar MJ, Pauli AT, Adams JJ (2013) Morphology, thermal analysis and rheology of Sasobit modified warm mix asphalt binders. Fuel 115:416–425CrossRefGoogle Scholar
  14. 14.
    Loeber L, Sutton O, Morel J, Valleton JM, Muller G (1996) New direct observations of asphalts and asphalt binders by scanning electron microscopy and atomic force microscopy. J Microsc 182:32–39CrossRefGoogle Scholar
  15. 15.
    Fischer H, Stadler H, Erina N (2013) Quantitative temperature-depending mapping of mechanical properties of bitumen at the nanoscale using the AFM operated with PeakForce TappingTM mode. J Microsc 250:210–217CrossRefGoogle Scholar
  16. 16.
    Lyne Å, Wallqvist V, Rutland M, Claesson P, Birgisson B (2013) Surface wrinkling: the phenomenon causing bees in bitumen. J Mater Sci 48:6970–6976. doi: 10.1007/s10853-013-7505-4 CrossRefGoogle Scholar
  17. 17.
    Masson JF, Leblond V, Margeson J (2006) Bitumen morphologies by phase-detection atomic force microscopy. J Microsc 221:17–29CrossRefGoogle Scholar
  18. 18.
    Jäger A, Lackner R, Eisenmenger-Sittner C, Blab R (2004) Identification of microstructural components of bitumen by means of atomic force microscopy (AFM). PAMM 4:400–401CrossRefGoogle Scholar
  19. 19.
    Masson JF, Leblond V, Margeson J, Bundalo-Perc S (2007) Low-temperature bitumen stiffness and viscous paraffinic nano- and micro-domains by cryogenic AFM and PDM. J Microsc 227:191–202CrossRefGoogle Scholar
  20. 20.
    Schmets A, Kringos N, Pauli T, Redelius P, Scarpas T (2010) On the existence of wax-induced phase separation in bitumen. Int J Pavement Eng 11:555–563CrossRefGoogle Scholar
  21. 21.
    Lyne ÅL, Wallqvist V, Birgisson B (2013) Adhesive surface characteristics of bitumen binders investigated by atomic force microscopy. Fuel 113:248–256CrossRefGoogle Scholar
  22. 22.
    Sourty ED, Tamminga AY, Michels MAJ, Vellinga WP, Meijer HEH (2011) The microstructure of petroleum vacuum residue films for bituminous concrete: a microscopy approach. J Microsc 241:132–146CrossRefGoogle Scholar
  23. 23.
    Acevedo S, Cordero TJM, Carrier H, Bouyssiere B, Lobinski R (2009) Trapping of paraffin and other compounds by asphaltenes detected by laser desorption ionization-time of flight mass spectrometry (LDI-TOF MS): role of A1 and A2 asphaltene fractions in this trapping. Energy Fuels 23:842–848CrossRefGoogle Scholar
  24. 24.
    Kriz P, Andersen SI (2005) Effect of asphaltenes on crude oil wax crystallization. Energy Fuels 19:948–953CrossRefGoogle Scholar
  25. 25.
    Pimpinelli A, Villain J (1998) Physics of crystal growth. Cambridge University Press, CambridgeGoogle Scholar
  26. 26.
    Lu X, Langton M, Olofsson P, Redelius P (2005) Wax morphology in bitumen. J Mater Sci 40:1893–1900. doi: 10.1007/s10853-005-1208-4 CrossRefGoogle Scholar
  27. 27.
    Fischer HR, Dillingh EC (2014) On the investigation of the bulk microstructure of bitumen—introducing two new techniques. Fuel 118:365–368CrossRefGoogle Scholar
  28. 28.
    Turner TF, Branthaver JF (1997) DSC studies of asphalts and asphalt components. Dekker, pp 59–101Google Scholar
  29. 29.
    Masson JF, Polomark GM, Collins P (2002) Time-dependent microstructure of bitumen and its fractions by modulated differential scanning calorimetry. Energy Fuels 16:470–476CrossRefGoogle Scholar
  30. 30.
    Masson JF, Polomark GM (2001) Bitumen microstructure by modulated differential scanning calorimetry. Thermochim Acta 374:105–114CrossRefGoogle Scholar
  31. 31.
    Depardieu M, Janot R, Sanchez C, Deleuze H, Gervais C, Birot M, Morcrette M, Backov R (2014) Nano-spots induced break of the chemical inertness of boron: a new route toward reversible hydrogen storage applications. J Mater Chem A 2:7694–7701CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Manuel Mercé
    • 1
  • Hassan Saadaoui
    • 1
  • François Dole
    • 1
  • Lionel Buisson
    • 1
  • Ahmed Bentaleb
    • 1
  • David Ruggi
    • 1
  • Véronique Schmitt
    • 1
    Email author
  • Rénal Backov
    • 1
    Email author
  1. 1.Université de Bordeaux, CRPP UPR CNRS 8641PessacFrance

Personalised recommendations