Journal of Materials Science

, Volume 50, Issue 18, pp 6180–6196 | Cite as

Systematic theoretical investigation of structures, stabilities, and electronic properties of rhodium-doped silicon clusters: Rh2Si n q (n = 1–10; q = 0, ±1)

  • Shuai Zhang
  • Yu Zhang
  • Xingqiang Yang
  • Cheng Lu
  • Genquan Li
  • Zhiwen Lu
Original Paper


A systematic investigation of rhodium-doped silicon clusters, Rh2Si n q with n = 1–10 and q = 0, ±1, in the neutral, anionic, and cationic states is performed using density functional theory approach at B3LYP/GENECP level. According to the optimum Rh2Si n q clusters, mostly equilibrium geometries prefer the three-dimensional structures for n = 2–10. When n = 10, one Rh atom in Rh2Si 10 0,±1 clusters completely falls into the center of Si frame, and cage-like Rh2Si 10 0,±1 geometries are formed. The Rh2Si 1,6–9 + and Rh2Si 5,7,9 clusters significantly deform their corresponding neutral geometries, which are in line with the calculated ionization potential and electron affinity values. The relative stabilities of Rh2Si n q clusters for the lowest-energy structures are analyzed on the basis of binding energy, fragmentation energy, second-order energy difference, and HOMO–LUMO gaps. The theoretical results confirm that the Rh2Si6 , Rh2Si6, and Rh2Si6 + clusters are more stable than their neighboring ones. The natural population analysis reveals that the charges in Rh2Si n q clusters transfer from the Si atoms to the Rh atoms except Rh2Si+. In addition, the relationship between static polarizability and HOMO–LUMO gaps is discussed.


Silicon Cluster Adiabatic Electron Affinity Adiabatic Ionization Potential Vertical Electron Affinity Infrared Multiple Photon Dissociation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the National Natural Science Foundation of China (Nos. 11304167 and 61306007), 973 Program of China (2014CB660804), Postdoctoral Science Foundation of China (Nos. 20110491317 and 2014T70280), Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 15HASTIT020), Open Project of State Key Laboratory of Superhard Materials (No. 201405), and Young Core Instructor Foundation of Henan Province (No. 2012GGJS-152).

Supplementary material

10853_2015_9175_MOESM1_ESM.doc (181 kb)
Supplementary material 1 (DOC 181 kb)


  1. 1.
    Grubisic A, Ko YJ, Wang HP, Bowen KH (2009) Photoelectron spectroscopy of lanthanide-silicon cluster anions LnSin- (3 ≤ n ≤ 13; Ln = Ho, Gd, Pr, Sm, Eu, Yb): prospect for magnetic silicon-based clusters. J Am Chem Soc 131(30):10783–10790CrossRefGoogle Scholar
  2. 2.
    Xie L, Li WL, Romanescu C, Huang X, Wang LS (2013) A photoelectron spectroscopy and density functional study of di-tantalum boride clusters: Ta2Bx (x = 2–5). J Chem Phys 138(3):034308/1–034308/11CrossRefGoogle Scholar
  3. 3.
    Xu B, Liu JP, Zhao LL, Yan LL (2013) Theoretical study on the structure and stability of aluminum hydride (AlnH3n) clusters. J Mater Sci 48(6):2647–2658. doi: 10.1007/s10853-012-7058-y CrossRefGoogle Scholar
  4. 4.
    Guo L (2010) Density functional study of structural and electronic properties of GaPn (2 ≤ n ≤ 12) clusters. J Mater Sci 45(12):3381–3387. doi: 10.1007/s10853-010-4361-3 CrossRefGoogle Scholar
  5. 5.
    Beyer MK, Knickelbein MB (2007) Electric deflection studies of rhodium clusters. J Chem Phys 126(10):104301/1–104301/7CrossRefGoogle Scholar
  6. 6.
    Götz DA, Heiles S, Schäfer R (2012) Polarizabilities of SiN (N = 8–75) clusters from molecular beam electric deflection experiments. Eur Phys J D 66:293/1–293/4CrossRefGoogle Scholar
  7. 7.
    Ju M, Lv J, Kuang XY, Ding LP, Lu C, Wang JJ, Jin YY, Maroulis G (2015) Systematic theoretical investigation of geometries, stabilities and magnetic properties of iron oxide clusters (FeO)nμ (n = 1–8, μ = 0, ±1): insights and perspectives. RSC Adv 5(9):6560–6570CrossRefGoogle Scholar
  8. 8.
    Koyasu K, Akutsu M, Mitsui M, Nakajima A (2005) Selective formation of MSi16 (M = Sc, Ti, and V). J Am Chem Soc 127(14):4998–4999CrossRefGoogle Scholar
  9. 9.
    Reveles JU, Khanna SN (2006) Electronic counting rules for the stability of metal-silicon clusters. Phys Rev B 74(3):035435/1–035435/6Google Scholar
  10. 10.
    Li YJ, Tam NM, Claes P, Woodham AP, Lyon JT, Ngan VT, Nguyen MT, Lievens P, Fielicke A, Janssens E (2014) Structure assignment, electronic properties, and magnetism quenching of endohedrally doped neutral silicon clusters, SinCo (n = 10–12). J Phys Chem A 118(37):8198–8203CrossRefGoogle Scholar
  11. 11.
    Kong XY, Xu HG, Zheng WJ (2012) Structures and magnetic properties of CrSin (n = 3–12) clusters: photoelectron spectroscopy and density functional calculations. J Chem Phys 137(6):064307/1–064307/9CrossRefGoogle Scholar
  12. 12.
    Hiura H, Miyazaki T, Kanayama T (2001) Formation of metal-encapsulating Si cage clusters. Phys Rev Lett 86(9):1733–1736CrossRefGoogle Scholar
  13. 13.
    Koyasu K, Atobe J, Akutsu M, Mitsui M, Nakajima A (2007) Electronic and geometric stabilities of clusters with transition metal encapsulated by silicon. J Phys Chem A 111(1):42–49CrossRefGoogle Scholar
  14. 14.
    Ngan VT, Gruene P, Claes P, Janssens E, Fielicke A, Nguyen MT, Lievens P (2010) Disparate effects of Cu and V on structures of exohedral transition metal-doped silicon clusters: a combined Far-Infrared spectroscopic and computational study. J Am Chem Soc 132(44):15589–15602CrossRefGoogle Scholar
  15. 15.
    Ngan VT, Janssens E, Claes P, Lyon JY, Fielicke A, Nguyen MT, Lievens P (2012) High magnetic moments in manganese-doped silicon clusters. Chem Eur J 18(39):15788–15793CrossRefGoogle Scholar
  16. 16.
    Li YJ, Lyon JT, Woodham AP, Fielicke A, Janssens E (2014) The geometric structure of silver-doped silicon clusters. Chem Phys Chem 15(2):328–336Google Scholar
  17. 17.
    Lu J, Nagase S (2003) Structural and electronic properties of metal-encapsulated silicon clusters in a large size range. Phys Rev Lett 90(11):115506/1–115506/4CrossRefGoogle Scholar
  18. 18.
    Miyazaki T, Hiura H, Kanayama T (2003) Electronic properties of transition-metal-atom doped Si cage clusters. Eur Phys J D 24(1):241–244CrossRefGoogle Scholar
  19. 19.
    Guo LJ, Zhao GF, Gu YZ, Liu X, Zeng Z (2008) Density-functional investigation of metal-silicon cage clusters MSin (M = Sc,Ti,V,Cr,Mn,Ni,Cu,Zn; n = 8–16). Phys Rev B 77(19):195417/1–195417/8CrossRefGoogle Scholar
  20. 20.
    Ma L, Wang JG, Wang GH (2013) Site-specific analysis of dipole polarizabilities of heterogeneous systems: Iron-doped Sin (n = 1–14) clusters. J Chem Phys 138(9):094304/1–094304/9CrossRefGoogle Scholar
  21. 21.
    Ren ZY, Hou R, Guo P, Gao JK, Du GH, Wen ZY (2008) A density functional theoretical investigation of RhSin (n = 1–6) clusters. Chin Phys B 17(6):2116–2123CrossRefGoogle Scholar
  22. 22.
    Chien CH, Blaisten-Barojas E, Pederson MR (1998) Magnetic and electronic properties of rhodium clusters. Phys Rev A 58(3):2196–2202CrossRefGoogle Scholar
  23. 23.
    Silva JLF, Piotrowski MJ, Aguilera-Granja F (2012) Hybrid density functional study of small Rhn (n = 2–15) clusters. Phys Rev B 86(12):125430/1–125430/6CrossRefGoogle Scholar
  24. 24.
    Wang YC, Lv J, Zhu L, Ma YM (2010) Crystal structure prediction via particle-swarm optimization. Phys Rev B 82(9):094116/1–094116/8Google Scholar
  25. 25.
    Wang YC, Lv J, Zhu L, Ma YM (2012) CALYPSO: a method for crystal structure prediction. Comput Phys Commun 183(10):2063–2070CrossRefGoogle Scholar
  26. 26.
    Wang YC, Miao, Lv J, Zhu L, Yin KT, Liu HY, Ma YM (2012) An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm. J Chem Phys 137(22):224108/1–224108/6Google Scholar
  27. 27.
    Luo X, Yang J, Liu H, Wu X, Wang Y, Ma YM, Wei SH, Gong X, Xiang H (2001) Predicting two-dimensional boron-carbon compounds by the global optimization method. J Am Chem Soc 133(40):16285–16290CrossRefGoogle Scholar
  28. 28.
    Lu SH, Wang YC, Liu HY, Miao MS, Ma YM (2014) Self-assembled ultrathin nanotubes on diamond (100) surface. Nat Commun 5(16):3666–3672Google Scholar
  29. 29.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Baron V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghava-chari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez G, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, HeadGordon M, Replogle ES, Pople JA (2009) Gaussian 09, Revision C.01. Gaussian, Inc., WallingfordGoogle Scholar
  30. 30.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100CrossRefGoogle Scholar
  31. 31.
    Lee C, Yang W, Parr RG (1988) Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789CrossRefGoogle Scholar
  32. 32.
    Xiao CY, Hagelberg F, Lester WA Jr (2002) Geometric, energetic, and bonding properties of neutral and charged copper-doped silicon clusters. Phys Rev B 66(7):075425/1–075425/23CrossRefGoogle Scholar
  33. 33.
    Hossain D, Pittman CU Jr, Gwaltney SR (2008) Structures and stabilities of copper encapsulated within silicon nano-clusters: Cu@Sin (n = 9–15). Chem Phys Lett 451(1–3):93–97CrossRefGoogle Scholar
  34. 34.
    Han JG, Zhao RN, Duan YH (2007) Geometries, stabilities, and growth patterns of the bimetal Mo2-doped Sin (n = 9–16) clusters: a density functional investigation. J Phys Chem A 111(11):2148–2155CrossRefGoogle Scholar
  35. 35.
    Tam NM, Tai TB, Ngan VT, Nguyen MT (2013) Thermochemical properties, and growth sequence of aluminum-doped silicon clusters SinAlm (n = 1–11, m = 1–2) and their anions. J Phys Chem A 117(31):6867–6882CrossRefGoogle Scholar
  36. 36.
    Guo LJ, Liu X, Zhao GF, Luo YH (2007) Computational investigation of TiSin (n = 2–15) clusters by the density-functional theory. J Chem Phys 126(23):234704/1–234704/7CrossRefGoogle Scholar
  37. 37.
    Maroulis G (2012) Applying conventional ab initio and density functional theory approaches to electric property calculations. Quantitative aspects and perspectives. Struct Bond 149:95–130Google Scholar
  38. 38.
    Karamanis P, Maroulis G (2003) Single (C–C) and triple (C ≡ C) bond-length dependence of the static electric polarizability and hyperpolarizability of H–C ≡ C–C ≡ C–H. Chem Phys Lett 376:403–410CrossRefGoogle Scholar
  39. 39.
    Hohm U, Maroulis G (2004) Dipole-quadrupole and dipole–octopole polarizability of OsO4 from depolarized collision-induced light scattering experiments, ab initio and density functional theory calculations. J Chem Phys 121(21):10411–10418CrossRefGoogle Scholar
  40. 40.
    Maroulis G (2011) Charge distribution, electric multipole moments, static polarizability and hyperpolarizability of silene. Chem Phys Lett 505:5–10CrossRefGoogle Scholar
  41. 41.
    Maroulis G (2003) Electric (hyper)polarizability derivatives for the symmetric stretching of carbon dioxide. Chem Phys 291:81–95CrossRefGoogle Scholar
  42. 42.
    Gingerich KA, Cocke DL (1972) Thermodynamic confirmation for the high stability of gaseous TiRh as predicted by the Brewer–Engel metallic theory and the dissociation energy of diatomic rhodium. J Chem Soc, Chem Commun 1:536CrossRefGoogle Scholar
  43. 43.
    Huber KP, Herzberg G (1979) Constants of Diatomic Molecules. Van Nostrand Reinhold, New York, pp 125–128Google Scholar
  44. 44.
    Marijnissen A, Ter Meulen JJ (1996) Determination of the adiabatic ionization potentials of Si2 and SiCl by photoionization efficiency spectroscopy. Chem Phys Lett 263(6):803–810CrossRefGoogle Scholar
  45. 45.
    Zhu XL, Zeng XC, Lei YA, Pan B (2004) Structures and stability of medium silicon clusters. II. Ab initio molecular orbital calculations of Si12–Si20. J Chem Phys 120(19):8985–8995CrossRefGoogle Scholar
  46. 46.
    Reddy BV, Nayak SK, Khanna SN, Rao BK, Jena P (1999) Electronic structure and magnetism of Rhn (n = 2–13) clusters. Phys Rev B 59(7):5214–5222CrossRefGoogle Scholar
  47. 47.
    Arab A, Gobal F, Nahali N, Nahali M (2013) Electronic and structural properties of neutral, anionic, and cationic RhxCu4−x (x = 0–4) small clusters: a DFT study. J Clust Sci 24(1):273–287CrossRefGoogle Scholar
  48. 48.
    Beltrán, Zamudio FB, Chauhan V, Sen P, Wang HP, Ko YJ, Bowen K (2013) Ab initio and anion photoelectron studies of Rhn (n = 1–9) clusters. Eur Phys J D 67:63/1–63/8CrossRefGoogle Scholar
  49. 49.
    Wu ZJ, Su ZM (2006) Electronic structures and chemical bonding in transition metal monosilicides MSi (M = 3d, 4d, 5d elements). J Chem Phys 124(18):184306/1–184306/15CrossRefGoogle Scholar
  50. 50.
    Bruna PJ, Peyerimhoff SD, Buenker RJ (1980) Theoretical prediction of the potential curves for the lowest-lying states of the isovalent diatomics CN+, Si2, SiC, CP+, and SiN+ using the abinitio MRD-CI method. J Chem Phys 72(10):5437–5445CrossRefGoogle Scholar
  51. 51.
    Nigam S, Majunmder C, Kulshreshtha SK (2006) Structural and electronic properties of Sin, Sin-, and PSin-1 clusters (2 ≤ n ≤ 13): Theoretical investigation based on ab initio molecular orbital theory. J Chem Phys 125(7):074303/1–074303/11CrossRefGoogle Scholar
  52. 52.
    Robles R, Khanna SN (2009) Stable T2Sin (T = Fe,Co,Ni, 1 ≤ n ≤ 8) cluster motifs. J Chem Phys 130(16):164313/1–164313/6CrossRefGoogle Scholar
  53. 53.
    Robles R, Khanna SN (2008) Stability and magnetic properties of T2Sin (T = Cr, Mn, 1 ≤ n ≤ 8) clusters. Phys Rev B 77(23):235441/1–235441/6CrossRefGoogle Scholar
  54. 54.
    Shao P, Kuang XY, Ding LP, Zhong MM, Wang ZH (2012) Density-functional theory study of structures, stabilities, and electronic properties of the Cu2-doped silicon clusters: comparison with pure silicon clusters. Phys B 407(21):4379–4386CrossRefGoogle Scholar
  55. 55.
    Jungnickel G, Frauenheim T, Jackson KA (2000) Structure and energetics of SinNm clusters: growth pathways in a heterogenous cluster system. J Chem Phys 112(3):1295–1305CrossRefGoogle Scholar
  56. 56.
    Zdetsis AD (2009) Silicon-bismuth and germanium-bismuth clusters of high stability. J Phys Chem A 113(44):12079–12087CrossRefGoogle Scholar
  57. 57.
    Gao AM, Li GL, Chang Y, Chen HY, Finlow D, Li QS (2011) The structures and stabilities of small diarsenic-doped silicon clusters. Inorg Chim Acta 367(1):51–56CrossRefGoogle Scholar
  58. 58.
    Pouchan C, Bégue D, Zhang DY (2004) Between geometry, stability, and polarizability: density functional theory studies of silicon clusters Sin (n = 3–10). J Chem Phys 121(10):4628–4634CrossRefGoogle Scholar
  59. 59.
    Xu HG, Zhang ZG, Feng Y, Zheng WJ (2010) Photoelectron spectroscopy and density-functional study of Sc2Sin (n = 2–6) clusters. Chem Phys Lett 498(1–3):22–26CrossRefGoogle Scholar
  60. 60.
    Fielicke A, Lyon JT, Haertelt M, Meijer G, Claes P, De Haeck J, Lievens P (2009) Vibrational spectroscopy of neutral silicon clusters via far-IR-VUV two color ionization. J Chem Phys 131(17):171105/1–171105/4CrossRefGoogle Scholar
  61. 61.
    Haertelt M, Lyon JT, Claes P, De Haeck J, Lievens P, Fielicke A (2012) Gas-phase structures of neutral silicon clusters. J Chem Phys 136(6):064301/1–064301/6CrossRefGoogle Scholar
  62. 62.
    Vogel M, Kasigkeit C, Hirsch K, Langenberg A, Rittmann J, Zamudio-Bayer V, Kulesza A, Mitrić R, Möller T, Issendorff BV, Lau JT (2012) 2p core-level binding energies of size-selected free silicon clusters: Chemical shifts and cluster structure. Phys Rev B 85(19):195454/1–195454/5CrossRefGoogle Scholar
  63. 63.
    Tam NM, Tai TB, Nguyen MT (2012) Thermochemical parameters and growth mechanism of the boron doped silicon clusters, SinBq with n = 1–10 and q = −1, 0, +1. J Phys Chem C 116(37):20086–20098CrossRefGoogle Scholar
  64. 64.
    Liu Y, Li GL, Gao AM, Chen HY, Finlow D, Li QS (2011) The structures and properties of FeSin/FeSin+/FeSin(n = 1–8) clusters. Eur Phys J D 64(1):27–35CrossRefGoogle Scholar
  65. 65.
    Lu C, Kuang XY, Lu ZW, Mao AJ, Ma YM (2011) Determination of structures, stabilities, and electronic properties for bimetallic cesium-doped gold clusters: a density functional theory study. J Phys Chem A 115(33):9273–9281CrossRefGoogle Scholar
  66. 66.
    Trivedi R, Dhaka K, Bandyopadhyay D (2014) Study of electronic properties, stabilities and magnetic quenching of molybdenum-doped germanium clusters: a density functional investigation. RSC Adv 4(110):64825–64834CrossRefGoogle Scholar
  67. 67.
    Zhou GD, Duan LY (2002) Structural chemistry basis. Peking University Press, Beijing, pp 178–186Google Scholar
  68. 68.
    Bhattacharjee D, Kr Mishra B, Ch Deka RA (2014) A DFT study on structure, stabilities and electronic properties of double magnesium doped gold clusters. RSC Adv 4(100):56571–56581CrossRefGoogle Scholar
  69. 69.
    Zhang XR, Ding XL, Dai B, Yang JL (2005) Density functional theory study of Wn (n = 2–4) clusters. J Mol Struct: Theochem 757(1):113–118Google Scholar
  70. 70.
    Zhao YR, Kuang XY, Shao P, Li CG, Wang SJ, Li YF (2012) A systematic search for the structures, stabilities, and electronic properties of bimetallic Ca2-doped gold clusters: comparison with pure gold clusters. J Mol Model 18(4):1333–1343CrossRefGoogle Scholar
  71. 71.
    Brieger M, Renn A, Sodeik A, Hese A (1983) The dipole moment of 7LiH and 7LiD in the excited A 1Σ+ state: a test of the born-oppenheimer approximation. Chem Phys 75(1):1–9CrossRefGoogle Scholar
  72. 72.
    Brieger M (1984) Stark effect, polarizabilities and the electric dipole moment of heteronuclear diatomic molecules in 1Σ states. Chem Phys 89(2):275–295CrossRefGoogle Scholar
  73. 73.
    Bégué D, Merawa M, Pouchan C (1998) Dynamic dipole and quadrupole polarizabilities for the ground 21S and the low-lying 31S and 33S states of Be. Phys Rev A 57(4):2470–2473CrossRefGoogle Scholar
  74. 74.
    Fuentealba P, Simon-Manso Y, Chattaraj PK (2000) Molecular electronic excitations and the minimum polarizability principle. J Phys Chem A 104(14):3185–3187CrossRefGoogle Scholar
  75. 75.
    Wang JL, Yang ML, Wang GH, Zhao JJ (2003) Dipole polarizabilities of germanium clusters. Chem Phys Lett 367(3–4):448–454CrossRefGoogle Scholar
  76. 76.
    Vasiliev I, Ogut S, Chelikowsky JR (1997) Ab initio calculations for the polarizabilities of small semiconductor clusters. Phys Rev Lett 78(25):4805–4808CrossRefGoogle Scholar
  77. 77.
    Deng K, Yang JL, Chan CT (2000) Calculated polarizabilities of small Si clusters. Phys Rev A 61(2):025201/1–025201/4CrossRefGoogle Scholar
  78. 78.
    Jackson KA, Yang M, Chaudhuri I, Frauenheim T (2005) Shape, polarizability, and metallicity in silicon clusters. Phys Rev A 71(3):033205/1–033205/6CrossRefGoogle Scholar
  79. 79.
    Zhao YR, Kuang XY, Zheng BB, Li YF, Wang SJ (2011) Equilibrium geometries, stabilities, and electronic properties of the bimetallic M2-doped Aun (M = Ag, Cu; n = 1–10) clusters: comparison with pure gold clusters. J Phys Chem A 115(5):569–576CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Shuai Zhang
    • 1
  • Yu Zhang
    • 1
  • Xingqiang Yang
    • 1
  • Cheng Lu
    • 1
    • 2
  • Genquan Li
    • 1
  • Zhiwen Lu
    • 1
  1. 1.Department of PhysicsNanyang Normal UniversityNanyangChina
  2. 2.State Key Laboratory of Superhard MaterialsJilin UniversityChangchunChina

Personalised recommendations