Skip to main content

Advertisement

Log in

Enhanced solubilization of large-diameter single-walled carbon nanotubes with amino-functionalized dipyrene nanotweezers

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Pyrene-based nanotweezers 1 consisting of two pyrenes and amino-substituted carbazole in between have been successfully synthesized via Suzuki–Miyaura coupling reaction. The supramolecular complex formation of nanotweezers 1 with single-walled carbon nanotubes (SWNTs) was studied, and it was found that nanotweezers 1 exhibited much higher the SWNTs extraction ability as compared to the analogous dipyrene nanotweezers 2 and 3 with soluble alkyl-substituents. This enhanced extraction ability of 1 can be attributed to the formation of more stable SWNT complexes in methanol. On the basis of photoluminescence excitation and UV–Vis-NIR absorption of 76-CoMoCAT SWNTs before and after the extraction, nanotweezers 1 were found to show high selectivity towards (8,4)-, (7,6)-, (9,4)-, and (8,6)-SWNTs with diameter ranging from 0.84 to 0.97 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes-the route toward applications. Science 297:787–792

    Article  Google Scholar 

  2. Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y, Achiba Y (1999) Optical properties of single-wall carbon nanotubes. Synth Met 103:2555–2558

    Article  Google Scholar 

  3. Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Georliga L, Dekker C (1997) Individual single-wall carbon nanotubes as quantum wires. Nature 386:474–477

    Article  Google Scholar 

  4. Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1:60–65

    Article  Google Scholar 

  5. Green AA, Hersam MC (2008) Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes. Nano Lett 8:1417–1422

    Article  Google Scholar 

  6. Si R, Wang H, Wei L, Chen Y, Wang Z, Wei J (2012) Length dependent performances of sodium deoxycholate dispersed single walled carbon nanotube thin-film transistors. J Mater Res 28:1004–1011

    Article  Google Scholar 

  7. Zhao P, Einarsson E, Xiang R, Murakami Y, Maruyama S (2010) Controllable expansion of single-walled carbon nanotube dispersions using density gradient ultracentrifugation. J Phys Chem C 114:4831–4834

    Article  Google Scholar 

  8. Hároz EH, Rice WD, Lu BY, Ghosh S, Hauge RH, Weisman RB, Doorn SK, Kono J (2010) Enrichment of armchair carbon nanotubes via density gradient ultracentrifugation: raman spectroscopy evidence. ACS Nano 4:1955–1962

    Article  Google Scholar 

  9. Krupke R, Hennrich F, Hv Löhneysen, Kappes MM (2003) Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301:344–347

    Article  Google Scholar 

  10. Hennrich F, Krupke R, Kappes MM, Löhneysen HV (2005) Frequency dependence of the dielectrophoretic separation of single-walled carbon nanotubes. J Nanosci Nanotechnol 5:1166–1171

    Article  Google Scholar 

  11. Peng H, Alvarez NT, Kittrell C, Hauge RH, Schmidt HK (2006) Dielectrophoresis field flow fractionation of single-walled carbon nanotubes. J Am Chem Soc 128:8396–8397

    Article  Google Scholar 

  12. Tu X, Manohar S, Jagota A, Zheng M (2009) DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460:250–253

    Article  Google Scholar 

  13. Liu H, Nishide D, Tanaka T, Kataura H (2011) Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat Commun 2:309–316

    Article  Google Scholar 

  14. Nish A, Hwang J-Y, Doig J, Nicholas RJ (2007) Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat Nanotechnol 2:640–646

    Article  Google Scholar 

  15. Akazaki K, Toshimitsu F, Ozawa H, Fujigaya T, Nakashima N (2012) Recognition and one-pot extraction of right-and left-handed semiconducting single-walled carbon nanotube enantiomers using fluorene-binaphthol chiral copolymers. J Am Chem Soc 134:12700–12707

    Article  Google Scholar 

  16. Berton N, Lemasson F, Poschlad A, Meded V, Tristram F, Wenzel W, Hennrich F, Kappes MM, Mayor M (2014) Selective dispersion of large-diameter semiconducting single-walled carbon nanotubes with pyridine-containing copolymers. Small 10:360–367

    Article  Google Scholar 

  17. Gerstel P, Klumpp S, Hennrich F, Poschlad A, Meded V, Blasco E, Wenzel W, Kappes MM, Barner-Kowollik C (2013) Highly selective dispersion of single-walled carbon nanotubes via polymer wrapping: a combinatorial study via modular conjugation. ACS Macro Lett 3:10–15

    Article  Google Scholar 

  18. Berton N, Lemasson F, Tittmann J, Stürzl N, Hennrich F, Kappes MM, Mayor M (2011) Copolymer-controlled diameter-selective dispersion of semiconducting single-walled carbon nanotubes. Chem Mater 23:2237–2249

    Article  Google Scholar 

  19. Jakubka F, Schießl SP, Martin S, Englert JM, Hauke F, Hirsch A, Zaumseil J (2012) Effect of polymer molecular weight and solution parameters on selective dispersion of single-walled carbon nanotubes. ACS Macro Lett 1:815–819

    Article  Google Scholar 

  20. Si R, Wei L, Wang H, Su D, Mushrif SH, Chen Y (2014) Extraction of (9, 8) single-walled carbon nanotubes by fluorene-based polymers. Chem Asian J 9:868–877

    Article  Google Scholar 

  21. Yoon S-M, Kim SJ, Shin H-J, Benayad A, Choi SJ, Kim KK, Kim SM, Park YJ, Kim G, Choi J-Y (2008) Selective oxidation on metallic carbon nanotubes by halogen oxoanions. J Am Chem Soc 130:2610–2616

    Article  Google Scholar 

  22. Mahjouri-Samani M, Zhou Y, Xiong W, Gao Y, Mitchell M, Lu Y (2009) Laser induced selective removal of metallic carbon nanotubes. Nanotechnology 20:495202

    Article  Google Scholar 

  23. Chen Y, Wei L, Wang B, Lim S, Ciuparu D, Zheng M, Chen J, Zoican C, Yang Y, Haller GL (2007) Low-defect, purified, narrowly (n, m)-dispersed single-walled carbon nanotubes grown from cobalt-incorporated MCM-41. ACS Nano 1:327–336

    Article  Google Scholar 

  24. Orellana W, Correa JD (2015) Noncovalent functionalization of carbon nanotubes and graphene with tetraphenylporphyrins: stability and optical properties from ab initio calculations. J Mater Sci 50:898–905. doi:10.1007/s10853-014-8650-0

    Article  Google Scholar 

  25. Peng X, Komatsu N, Bhattacharya S, Shimawaki T, Aonuma S, Kimura T, Osuka A (2007) Optically active single-walled carbon nanotubes. Nat Nanotechnol 2:361–365

    Article  Google Scholar 

  26. Peng X, Komatsu N, Kimura T, Osuka A (2007) Improved optical enrichment of SWNTs through extraction with chiral nanotweezers of 2,6-pyridylene-bridged diporphyrins. J Am Chem Soc 129:15947–15953

    Article  Google Scholar 

  27. Peng X, Komatsu N, Kimura T, Osuka A (2008) Simultaneous enrichments of optical purity and (n, m) abundance of SWNTs through extraction with 3,6-carbazolylene-bridged chiral diporphyrin nanotweezers. ACS Nano 2:2045–2050

    Article  Google Scholar 

  28. Wang F, Matsuda K, Rahman AM, Peng X, Kimura T, Komatsu N (2010) Simultaneous discrimination of handedness and diameter of single-walled carbon nanotubes (swnts) with chiral diporphyrin nanotweezers leading to enrichment of a single enantiomer of (6, 5)-swnts. J Am Chem Soc 132:10876–10881

    Article  Google Scholar 

  29. Liu G, Wang F, Chaunchaiyakul S, Saito Y, Bauri AK, Kimura T, Kuwahara Y, Komatsu N (2013) Simultaneous discrimination of diameter, handedness, and metallicity of single-walled carbon nanotubes with chiral diporphyrin nanocalipers. J Am Chem Soc 135:4805–4814

    Article  Google Scholar 

  30. Wang C, Xu W, Zhao J, Lin J, Chen Z, Cui Z (2014) Selective silencing of the electrical properties of metallic single-walled carbon nanotubes by 4-nitrobenzenediazonium tetrafluoroborate. J Mater Sci 49:2054–2062. doi:10.1007/s10853-013-7895-3

    Article  Google Scholar 

  31. Liu C, Zhang H (2010) Chemical approaches towards single-species single-walled carbon nanotubes. Nanoscale 2:1901–1918

    Article  Google Scholar 

  32. Liu C, Liu Y, Zhang Y, Wei R, Zhang H (2009) Tandem extraction strategy for separation of metallic and semiconducting SWCNTs using condensed benzenoid molecules: effects of molecular morphology and solvent. Phys Chem Chem Phys 11:7257–7267

    Article  Google Scholar 

  33. Li Y, Rahman AM, Liu G, Xiong Z, Koezuka K, Xu Z, Komatsu N, Wang F (2013) Enrichment of large-diameter single-walled carbon nanotubes (swnts) with metallo-octaethylporphyrins. Materials 6:3064–3078

    Article  Google Scholar 

  34. Wang F, Matsuda K, Rahman AM, Kimura T, Komatsu N (2011) Improved selectivity in discriminating handedness and diameter of single-walled carbon nanotubes with N-substituted 3,6-carbazolylene-bridged chiral diporphyrin nanotweezers. Nanoscale 3:4117–4124

    Article  Google Scholar 

  35. Li Y, Wang X, Lv R, Wang F (2014) Non-covalent separation of optically active single-walled carbon nanotubes. Prog Chem 26:1361–1368

    Google Scholar 

  36. Rahman AM, Wang F, Matsuda K, Kimura T, Komatsu N (2011) Diameter-based separation of single-walled carbon nanotubes through selective extraction with dipyrene nanotweezers. Chem Sci 2:862–867

    Article  Google Scholar 

  37. Liu G, Rahman AM, Chaunchaiyakul S, Kimura T, Kuwahara Y, Komatsu N (2013) Bis (tert-butylpyrene) nanotweezers and nanocalipers: enhanced extraction and recognition abilities for single-walled carbon nanotubes. Chem Eur J 19:16221–16230

    Article  Google Scholar 

  38. Backes C, Schmidt CD, Hauke F, Hirsch A (2011) Perylene-based nanotweezers: enrichment of larger-diameter single-walled carbon nanotubes. Chem Eur J 6:438–444

    Google Scholar 

  39. Marquis R, Kulikiewicz K, Lebedkin S, Kappes MM, Mioskowski C, Meunier S, Wagner A (2009) Axially chiral facial amphiphiles with a dihydronaphthopentaphene structure as molecular tweezers for swnts. Chem Eur J 15:11187–11196

    Article  Google Scholar 

  40. Tromp R, Afzali A, Freitag M, Mitzi D, Chen Z (2008) Novel strategy for diameter-selective separation and functionalization of single-wall carbon nanotubes. Nano Lett 8:469–472

    Article  Google Scholar 

  41. Huang F, Wu H, Wang D, Yang W, Cao Y (2004) Novel electroluminescent conjugated polyelectrolytes based on polyfluorene. Chem Mater 16:708–716

    Article  Google Scholar 

  42. Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298:2361–2366

    Article  Google Scholar 

  43. Tsyboulski DA, Rocha J-DR, Bachilo SM, Cognet L, Weisman RB (2007) Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. Nano Lett 7:3080–3085

    Article  Google Scholar 

  44. Cheng F, Zhang S, Adronov A, Echegoyen L, Diederich F (2006) Triply fused ZnII-porphyrin oligomers: synthesis, properties, and supramolecular interactions with single-walled carbon nanotubes (swnts). Chem Eur J 12:6062–6070

    Article  Google Scholar 

  45. Hennrich F, Krupke R, Lebedkin S, Arnold K, Fischer R, Resasco DE, Kappes MM (2005) Raman spectroscopy of individual single-walled carbon nanotubes from various sources. J Phys Chem B 109:10567–10573

    Article  Google Scholar 

  46. Maeda Y, Kimura S, Kanda M, Hirashima Y, Hasegawa T, Wakahara T, Lian Y, Nakahodo T, Tsuchiya T, Akasaka T, Lu J, Zhang X, Gao Z, Yu Y, Nagase S, Kazaoui S, Minami N, Shimizu T, Tokumoto H, Saito R (2005) Large-scale separation of metallic and semiconducting single-walled carbon nanotubes. J Am Chem Soc 127:10287–10290

    Article  Google Scholar 

  47. Furtado CA, Kim UJ, Gutierrez HR, Pan L, Dickey EC, Eklund PC (2004) Debundling and dissolution of single-walled carbon nanotubes in amide solvents. J Am Chem Soc 126:6095–6105

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Feng Wang wishes to thank Prof. Naoki Komatsu at Shiga University of Medical Science for the long-time support and encouragement. This work was financially supported by Natural Science Foundation of China (Grant No. 51103111), Education Ministry of China (Program for NCET-12-0714), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the Open Fund of the State Key Laboratory of Luminescent Materials and Devices (2014-skllmd-11), and Graduate Innovative Fund of Wuhan Institute of Technology (Grant No. CX2013009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 547 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, X., Cheng, C. et al. Enhanced solubilization of large-diameter single-walled carbon nanotubes with amino-functionalized dipyrene nanotweezers. J Mater Sci 50, 6032–6040 (2015). https://doi.org/10.1007/s10853-015-9150-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9150-6

Keywords