Skip to main content
Log in

Optimization of the CaO and P2O5 contents on PDMS–SiO2–CaO–P2O5 hybrids intended for bone regeneration

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Osteoproductive materials that induce quick bone regeneration are needed for the developing area of scaffold-based bone engineering. Bioactive silica-based glasses, ceramics, and hybrids are called to play an important role in this field. Organic–inorganic hybrid materials based on SiO2-modified PDMS–P2O5–CaO are studied in this work. These materials are synthesized by the sol–gel method, and the influence of the composition on the reaction kinetic, obtained porosities, degradation and bioactive behavior, and cytotoxicity is studied. Materials with greater contents in CaO yield faster reaction kinetics and produce porous materials that favor a quicker degradation, whereas with greater P2O5 contents produce denser and more stable materials. The incorporation of CaO and P2O5 up to 5 and 25 % in weight into the SiO2 network, respectively, resulted in an increase of the apatite-forming ability in PBS. None of the studied compositions are cytotoxic, showing cellular viability over 70 % at all times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sayed AA, Agarwal M, Giannoudis PV, Matthews SJE, Smith RM (2004) Distal femoral fractures: long term outcome following stabilization with the LISS. Injury 35:599–607

    Article  Google Scholar 

  2. Zhao G, Zinger O, Schwartz Z, Wieland M, Landolt D, Boyan BD (2006) Osteoblast-like cells are sensitive to submicron-scale surface structure. Clin Oral Implant Res 17(3):258–264

    Article  Google Scholar 

  3. Miyazaki T, Kamitakahar M, Ohtsuki C (2009) Chapter 16: development of bioactive organic-inorganic hybrids through sol-gel processing. In: Merheri L (ed) Hybrid nanocomposites for nanotechnology. Springer Science + Business Media, LLC, New York, pp 769–793

    Chapter  Google Scholar 

  4. Yang Y, Kang Y, Sen M, Park S (2011) Chapter 7: bioceramics in tissue engineering. In: Burdick JA, Mauck RL (eds) Biomaterials for tissue engineering applications. Springer, Wien, pp 179–207

    Chapter  Google Scholar 

  5. Rodríguez-Lorenzo LM (2014) Functionalized apatite nanocrystals for biomedical applications. In: Lafisco M, Delgado-López JM (eds) Apatite: synthesis, structural characterization and biomedical applications. NOVA Publishers, New York, pp 261–290

    Google Scholar 

  6. Dorozhkin SV (2009) Calcium orthophosphate-based biocomposites and hybrid biomaterials. J Mater Sci 44:2343–2387

    Article  Google Scholar 

  7. Dorozhkin SV (2010) Bioceramics of calcium orthophosphates. Biomaterials 31:1465–1485

    Article  Google Scholar 

  8. Hesaraki S, Alizadeh M, Nazarian H, Sharifi D (2010) Physico-chemical and in vitro biological evaluation of strontium/calcium silicophosphate glass. J Mater Sci Mater Med 21:695–705

    Article  Google Scholar 

  9. Lee KY, Lee YH, Kim HM, Koh MY, Ahn SH, Lee HK (2005) Synthetic model of a bioactive functionally graded nano-hybrid in silica-polydimethylsiloxane system. Curr Appl Phys 5:453–457

    Article  Google Scholar 

  10. Sánchez-Téllez DA, Téllez-Jurado L, Chávez-Alcalá JF (2014) Bioactivity and degradability of hybrids nano-composites materials with great application as bone tissue substitutes. J Alloys Compd 615(1):670–675

    Article  Google Scholar 

  11. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing edit. Academic Press Inc. An Imprint of Elsevier, New York. ISBN.-13:978-0-12-134970-7

  12. D’Apuzzo M, Aronne A, Esposito S, Pernice P (2000) Sol-gel synthesis of humidity-sensitive P2O5-SiO2 amorphous films. J Sol-Gel Sci Tech 17:247–254

    Article  Google Scholar 

  13. Ma J, Chen CZ, Wang DG, Meng XG, Shi JZ (2010) Influence of the sintering temperature on the structural feature and bioactivity of sol-gel derived SiO2-CaO-P2O5 bioglass. Ceram Int 36:1911–1916

    Article  Google Scholar 

  14. Almeida JC, Castro AGB, Lancastre JJH, Miranda Salvado IM, Margaca FMA, Fernandes MHV, Ferreira LM, Casimiro MH (2014) Structural characterization of PDMS-TEOS-CaO-TiO2 hybrid materials obtained by sol-gel. Mater Chem Phys 143:557–563

    Article  Google Scholar 

  15. Téllez L, Rubio J, Rubio F, Morales E, Oteo JL (2004) FT-IR study of the hydrolysis and polymerization of tetraethyl orthosilicate and polydimethyl siloxane in the presence of tetrabutyl orthotitanate. Spectrosc Lett 37:11–31

    Article  Google Scholar 

  16. Salinas AJ, Merino JM, Babonneau F, Gil FJ, Vallet-Regí M (2007) Microstructure and macroscopic properties of bioactive CaO-SiO2-PDMS hybrids. J Biomed Mater Res B 81B:274–282

    Article  Google Scholar 

  17. Whang C, Seo D, Oh E, Kim Y (2005) Compositional dependence of apatite formation in sol-gel derived organic-inorganic hybrids. Glass Phys Chem 31(3):396–401

    Article  Google Scholar 

  18. Vallet-Regí M, Salinas AJ, Ramírez-Castellanos J, González-Calbet JM (2005) Nanostructure of bioactive sol-gel glasses and organic-inorganic hybrids. Chem Mater 17:1874–1879

    Article  Google Scholar 

  19. Sava BA, Elisa M, Vasiliu LC, Nastase F, Simon S (2012) Investigation on sol-gel process and structural characterization of SiO2-P2O5 powders. J Non-Cryst Solids 358:2877–2885

    Article  Google Scholar 

  20. Padilla S, Román J, Carenas A, Vallet-Regí M (2005) The influence of the phosphorus content on the bioactivity of sol-gel glass ceramics. Biomaterials 26:475–483

    Article  Google Scholar 

  21. Massiot Ph, Centeno MA, Carrizosa I, Odriozola JA (2001) Thermal evolution of sol-gel-obtained phosphosilicate solids (SiPO). J Non-Cryst Solids 292:158–166

    Article  Google Scholar 

  22. Fernández-Navarro JM (1991) El vidrio. Edit. Consejo Superior de Investigaciones Científicas. Fundación Centro Nacional del Vidrio. 2nd edn, Spain. ISBN: 84-00-07130-1

  23. Glaser RH, Wilkes GL, Bronnimann CE (1989) Solid state 29Si NMR of TEOS-based multifunctional sol-gel materials. J Non-Cryst Solids 113:73–87

    Article  Google Scholar 

  24. Neeraj Eswaramoorthy M, Rao CNR (1998) Mesoporous silicophosphate. Mater Res Bull. 33(10):1549–1554

    Article  Google Scholar 

  25. Carta D, Newport RJ, Knowles JC, Smith ME, Guerry P (2011) Sol-gel produced sodium calcium phosphosilicates for bioactive applications: synthesis and structural characterization. Mater Chem Phys 130:690–696

    Article  Google Scholar 

  26. Brow RK (2000) Review: the structure of simple phosphate glasses. J Non-Cryst Solids 263&264:1–28

    Article  Google Scholar 

  27. Siqueira RL, Zanotto ED (2011) Facile route to obtain a highly bioactive SiO2-CaO-Na2O-P2O5 crystalline powder. Mater Sci Eng C 31:1791–1799

    Article  Google Scholar 

  28. Saboori A, Rabiee M, Moztarzadeh F, Sheikhi M, Tahriri M, Karim M (2009) Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2-CaO-P2O5-MgO bioglass. Mater Sci Eng C 29:335–340

    Article  Google Scholar 

  29. Mozafari M, Moztarzadeh F, Tahriri M (2010) Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO2-CaO-P2O5 glass in simulated body fluid. J Non-Cryst Solids 356:1470–1478

    Article  Google Scholar 

  30. Tatai L, Moore TG, Adhikari R, Malherbe F, Jayasekara R, Griffiths I, Gunatillake PA (2007) Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in vitro degradation. Biomaterials 28:5407–5417

    Article  Google Scholar 

  31. John A, Mani S, Gopalakrishnam S, Babu S, Lal AV, Varma H (2011) Osteogenesis of a bioactive ceramic-calcium phosphosilicate composite system in goat femur defect. Int J Appl Ceram Technol 8(3):491–500

    Article  Google Scholar 

  32. Jiménez-Gallegos R, Téllez-Jurado L, Rodríguez-Lorenzo LM, San Román J (2011) Modulation of the hydrophilic character and influence on the biocompatibility of polyurethane-siloxane based hybrids. Bol Soc Esp Ceram Vidr 50(1):1–8

    Article  Google Scholar 

  33. Huang K, Cai S, Xu G, Ye X, Dou Y, Ren M, Wang X (2013) Preparation and characterization of mesoporous 45S5 bioactive glass-ceramic coatings on magnesium allow for corrosion protection. J Alloys Compd 580:290–297

    Article  Google Scholar 

  34. Kim IY, Kawachi G, Kikuta K, Cho SB, Kamitakahara M, Ohtsuki C (2008) Preparation of bioactive spherical particles in the CaO-SiO2 system through sol-gel processing under coexistence of poly(ethylene glycol). J Eur Ceram Soc 28:1595–1602

    Article  Google Scholar 

  35. Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cells Mater 5:1–16

    Google Scholar 

  36. Guana J, Fujimotoa KL, Sacksa MS, Wagnera WR (2005) Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials 26:3961–3971

    Article  Google Scholar 

  37. Sabino M, Núñez O, Müller J (2002) Evidencias Espectroscópicas de la Degradación Hidrolítica de la Poli(dioxanona). Rev Latinoam de Metal y Mater 22(2):40–51

    Google Scholar 

  38. Miyata N, Fuke K, Chen Q, Kawashita M, Kokubo T, Nakamura T (2004) Apatite-forming ability and mechanical properties of PTMO modified CaO–SiO2–TiO2 hybrids derived from sol-gel processing. Biomaterials 25:1–7

    Article  Google Scholar 

  39. Chikara O, Miyazaki T, Tanihara M (2002) Development of bioactive organic-inorganic hybrid for bone substitutes. Mater Sci Eng C 22:27–34

    Article  Google Scholar 

  40. Sastre R, de Aza S, San Román J (2001) Biomateriales. Edit. CYTED Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Italy. ISBN: 84-87683-26-6

  41. Sadat-Shojai M, Khorasani M-T, Dinpanah-Khoshdargi E, Jamshidi A (2013) Review: synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater 9:7591–7621

    Article  Google Scholar 

  42. Kim H-M, Himeno T, Kokubo T, Nakamura T (2005) Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials 26(21):4366–4373

    Article  Google Scholar 

  43. Ragel CV, Vallet-Regí M, Rodríguez-Lorenzo LM (2002) Preparation and in vitro bioactivity of hydroxyapatite/sol gel-glass biphasic material. Biomaterials 23(8):1865–1872

    Article  Google Scholar 

  44. Ohtsuki C, Miyazaki T, Kamitakahara M, Tinihara M (2007) Design of novel bioactive materials through organic modification of calcium silicate. J Eur Ceram Soc 27:1527–1533

    Article  Google Scholar 

  45. Mami M, Lucas-Girot A, Oudadesse H, Dorbez-Sridi R, Mezahi F, Dietrich E (2008) Investigation of the surface reactivity of a sol gel derived glass in the ternary system SiO2-CaO-P2O5. Appl Surf Sci 254:7386–7393

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by DGICT Project, MAT2014-51918-C2-1-R, Spain, and SIP-IPN 20140064 Project, Mexico. DA Sánchez-Téllez also acknowledges CONACYT for the scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Sánchez-Téllez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Téllez, D.A., Téllez-Jurado, L. & Rodríguez-Lorenzo, L.M. Optimization of the CaO and P2O5 contents on PDMS–SiO2–CaO–P2O5 hybrids intended for bone regeneration. J Mater Sci 50, 5993–6006 (2015). https://doi.org/10.1007/s10853-015-9147-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9147-1

Keywords

Navigation