Journal of Materials Science

, Volume 50, Issue 17, pp 5641–5673 | Cite as

Electric double-layer transistors: a review of recent progress

  • Haiwei Du
  • Xi Lin
  • Zhemi Xu
  • Dewei ChuEmail author


With the miniaturization of electronic devices, it is essential to achieve higher carrier density and lower operation voltage in field-effect transistors (FETs). However, this is a great challenge in conventional FETs owing to the low capacitance and electric breakdown of gate dielectrics. Recently, electric double-layer technology with ultra-high charge-carrier accumulation at the semiconductor channel/electrolyte interface has been creatively introduced into transistors to overcome this problem. Some interesting electrical transport characteristics such as superconductivity, metal–insulator transition, and tunable thermoelectric behavior have been modulated both theoretically and experimentally in electric double-layer transistors (EDLTs) with various semiconductor channel layers and electrolyte materials. The present article is a review of the recent progress in the EDLTs and the impacts of EDLT technology on modulating the charge transportation of various electronics.


Ionic Liquid Polymer Electrolyte MoS2 Electric Double Layer Gate Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by the Australian Research Council Project (Grant No. FT140100032). One of the authors (H. Du) appreciates the China Scholarship Council (CSC) for financial support (No. 201406410060).


  1. 1.
    Lilienfeld JE (1933) Device for controlling electric current. US Patent 1900018 AGoogle Scholar
  2. 2.
    Kuo Y (2013) Thin film transistor technology–Past present and future. Electrochem Soc Interface 22:55–61Google Scholar
  3. 3.
    Kahng D (1963) Electric field controlled semiconductor device. US Patent 3102230Google Scholar
  4. 4.
    Chaudhry A (2013) Fundamentals of nanoscaled field effect transistors. Springer, New YorkCrossRefGoogle Scholar
  5. 5.
    Kraitchm J (1967) Silicon oxide films grown in a microwave discharge. J Appl Phys 38:4323CrossRefGoogle Scholar
  6. 6.
    Ueno K, Shimotani H, Yuan H, Ye J, Kawasaki M, Iwasa Y (2014) Field-induced superconductivity in electric double layer transistors. J Phys Soc Jpn 83:032001CrossRefGoogle Scholar
  7. 7.
    Panzer MJ, Frisbie CD (2007) Polymer electrolyte-gated organic field-effect transistors: low-voltage, high-current switches for organic electronics and testbeds for probing electrical transport at high charge carrier density. J Am Chem Soc 129:6599–6607CrossRefGoogle Scholar
  8. 8.
    Robertson J, Wallace RM (2015) High-K materials and metal gates for CMOS applications. Mater Sci Eng R 88:1–41CrossRefGoogle Scholar
  9. 9.
    Hulea I, Fratini S, Xie H, Mulder CL, Iossad NN, Rastelli G, Ciuchi S, Morpurgo AF (2006) Tunable Fröhlich polarons in organic single-crystal transistors. Nat Mater 5:982–986CrossRefGoogle Scholar
  10. 10.
    Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements, Biomed Eng IEEE T BME-17:70-71Google Scholar
  11. 11.
    Weisheit M, Fähler S, Marty A, Souche Y, Poinsignon C, Givord D (2007) Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315:349–351CrossRefGoogle Scholar
  12. 12.
    Ono S, Seki S, Hirahara R, Tominari Y, Takeya J (2008) High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids. Appl Phys Lett 92:103313CrossRefGoogle Scholar
  13. 13.
    Ahn C, Bhattacharya A, Di Ventra M et al (2006) Electrostatic modification of novel materials. Rev Mod Phys 78:1185CrossRefGoogle Scholar
  14. 14.
    Panda S (2009) Microelectronics and optoelectronics technology. Laxmi Publications, New DelhiGoogle Scholar
  15. 15.
    Brennan KF (1999) The physics of semiconductors: with applications to optoelectronic devices. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  16. 16.
    Ferain I, Colinge CA, Colinge J-P (2011) Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 479:310–316CrossRefGoogle Scholar
  17. 17.
    Fortunato E, Barquinha P, Martins R (2012) Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater 24:2945–2986CrossRefGoogle Scholar
  18. 18.
    Yuan H, Wang H, Cui Y (2015) Two-dimensional layered chalcogenides: from rational synthesis to property control via orbital occupation and electron filling. Acc Chem Res 48:81–90CrossRefGoogle Scholar
  19. 19.
    Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531CrossRefGoogle Scholar
  20. 20.
    Mitra S, Shukla A, Sampath S (2001) Electrochemical capacitors with plasticized gel-polymer electrolytes. J Power Sources 101:213–218CrossRefGoogle Scholar
  21. 21.
    Nakayama H, Ye J, Ohtani T et al (2012) Electroresistance effect in gold thin film induced by ionic-liquid-gated electric double layer. Appl Phys Express 5:023002CrossRefGoogle Scholar
  22. 22.
    Yuan H, Shimotani H, Tsukazaki A et al (2010) Hydrogenation-induced surface polarity recognition and proton memory behavior at protic-ionic-liquid/oxide electric-double-layer interfaces. J Am Chem Soc 132:6672–6678CrossRefGoogle Scholar
  23. 23.
    Thiemann S, Sachnov S, Porscha S, Wasserscheid P, Zaumseil J (2012) Ionic liquids for electrolyte-gating of ZnO field-effect transistors. J Phys Chem C 116:13536–13544CrossRefGoogle Scholar
  24. 24.
    Shimotani H, Asanuma H, Tsukazaki A, Ohtomo A, Kawasaki M, Iwasa Y (2007) Insulator-to-metal transition in ZnO by electric double layer gating. Appl Phys Lett 91:082106CrossRefGoogle Scholar
  25. 25.
    Nasr B, Wang D, Kruk R, Rösner H, Hahn H, Dasgupta S (2013) High-Speed, low-voltage, and environmentally stable operation of electrochemically gated zinc oxide nanowire field-effect transistors. Adv Funct Mater 23:1750–1758CrossRefGoogle Scholar
  26. 26.
    Misra R, McCarthy M, Hebard AF (2007) Electric field gating with ionic liquids. Appl Phys Lett 90:052905CrossRefGoogle Scholar
  27. 27.
    Shimotani H, Suzuki H, Ueno K, Kawasaki M, Iwasa Y (2008) p-type field-effect transistor of NiO with electric double-layer gating. Appl Phys Lett 92:242107CrossRefGoogle Scholar
  28. 28.
    Huang X, Zeng Z, Zhang H (2013) Metal dichalcogenide nanosheets: preparation, properties and applications. Chem Soc Rev 42:1934–1946CrossRefGoogle Scholar
  29. 29.
    Zhang Y, Ye J, Matsuhashi Y, Iwasa Y (2012) Ambipolar MoS2 thin flake transistors. Nano Lett 12:1136–1140CrossRefGoogle Scholar
  30. 30.
    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150CrossRefGoogle Scholar
  31. 31.
    Perera MM, Lin MW, Chuang HJ et al (2013) Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 7:4449–4458CrossRefGoogle Scholar
  32. 32.
    Pu J, Yomogida Y, Liu KK, Li LJ, Iwasa Y, Takenobu T (2012) Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett 12:4013–4017CrossRefGoogle Scholar
  33. 33.
    Zhang Y, Ye J, Yomogida Y, Takenobu T, Iwasa Y (2013) Formation of a stable p-n junction in a liquid-gated MoS2 ambipolar transistor. Nano Lett 13:3023–3028CrossRefGoogle Scholar
  34. 34.
    Arora S, Patel D, Agarwal M (1994) Electrical and optical behaviour of vapour-grown SnS2 crystals. J Mater Sci 29:3979–3983. doi: 10.1007/BF00355957 CrossRefGoogle Scholar
  35. 35.
    Yuan H, Toh M, Morimoto K, Tan W, Wei F, Shimotani H, Kloc Ch, Iwasa Y (2011) Liquid-gated electric-double-layer transistor on layered metal dichalcogenide, SnS2. Appl Phys Lett 98:012102CrossRefGoogle Scholar
  36. 36.
    Yuan H, Bahramy MS, Morimoto K et al (2013) Zeeman-type spin splitting controlled by an electric field. Nat Phys 9:563–569CrossRefGoogle Scholar
  37. 37.
    Yuan H, Wang X, Lian B et al (2014) Generation and electric control of spin–valley-coupled circular photogalvanic current in WSe2. Nat Nanotechnol 9:851–857CrossRefGoogle Scholar
  38. 38.
    Allard S, Forster M, Souharce B, Thiem H, Scherf U (2008) Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew Chem Int Ed 47:4070–4098CrossRefGoogle Scholar
  39. 39.
    Lee JW, Ju BK, Jang J, Yoon YS, Kim JK (2007) High mobility organic transistor patterned by the shadow-mask with all structure on a plastic substrate. J Mater Sci 42:1026–1030. doi: 10.1007/s10853-007-1573-2 CrossRefGoogle Scholar
  40. 40.
    Xie W, Frisbie CD (2011) Organic electrical double layer transistors based on rubrene single crystals: examining transport at high surface charge densities above 1013 cm−2. J Phys Chem C 115:14360–14368CrossRefGoogle Scholar
  41. 41.
    Shimotani H, Asanuma H, Iwasa Y (2007) Electric double layer transistor of organic semiconductor crystals in a four-probe configuration. Jpn J Appl Phys 46:3613–3617CrossRefGoogle Scholar
  42. 42.
    Panzer MJ, Newman CR, Frisbie CD (2005) Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric. Appl Phys Lett 86:103503CrossRefGoogle Scholar
  43. 43.
    Kergoat L, Piro B, Berggren M, Horowitz G, Pham MC (2012) Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors. Anal Bioanal Chem 402:1813–1826CrossRefGoogle Scholar
  44. 44.
    Kim SH, Hong K, Xie W et al (2013) Electrolyte-gated transistors for organic and printed electronics. Adv Mater 25:1822–1846CrossRefGoogle Scholar
  45. 45.
    Said E, Larsson O, Berggren M, Crispin X (2008) Effects of the ionic currents in electrolyte-gated organic field-effect transistors. Adv Funct Mater 18:3529–3536CrossRefGoogle Scholar
  46. 46.
    Bernards DA, Malliaras GG (2007) Steady-state and transient behavior of organic electrochemical transistors. Adv Funct Mater 17:3538–3544CrossRefGoogle Scholar
  47. 47.
    Laiho A, Herlogsson L, Forchheimer R, Crispin X, Berggren M (2011) Controlling the dimensionality of charge transport in organic thin-film transistors. Proc Natl Acad Sci 108:15069–15073CrossRefGoogle Scholar
  48. 48.
    Park YD, Kang B, Lim HS, Cho K, Kang MS, Cho JH (2013) Polyelectrolyte interlayer for ultra-sensitive organic transistor humidity sensors. ACS Appl Mater Interface 5:8591–8596CrossRefGoogle Scholar
  49. 49.
    Said E, Crispin X, Herlogsson L, Elhag S, Robinson ND, Berggren M (2006) Polymer field-effect transistor gated via a poly(styrenesulfonic acid) thin film. Appl Phys Lett 89:143507CrossRefGoogle Scholar
  50. 50.
    Fujimoto T, Matsushita MM, Awaga K (2013) Ambipolar carrier injections governed by electrochemical potentials of ionic liquids in electric-double-layer thin-film transistors of lead-and titanyl-phthalocyanine. J Phys Chem C 117:5552–5557CrossRefGoogle Scholar
  51. 51.
    Rosenblatt S, Yaish Y, Park J, Gore J, Sazonova V, McEuen PL (2002) High performance electrolyte gated carbon nanotube transistors. Nano Lett 2:869–872CrossRefGoogle Scholar
  52. 52.
    Lu C, Fu Q, Huang S, Liu J (2004) Polymer electrolyte-gated carbon nanotube field-effect transistor. Nano Lett 4:623–627CrossRefGoogle Scholar
  53. 53.
    Shimotani H, Kanbara T, Iwasa Y, Tsukagoshi K, Aoyagi Y, Kataura H (2006) Gate capacitance in electrochemical transistor of single-walled carbon nanotube. Appl Phys Lett 88:073104CrossRefGoogle Scholar
  54. 54.
    Okimoto H, Takenobu T, Yanagi K et al (2010) Tunable carbon nanotube thin-film transistors produced exclusively via inkjet printing. Adv Mater 22:3981–3986CrossRefGoogle Scholar
  55. 55.
    Ozel T, Gaur A, Rogers JA, Shim M (2005) Polymer electrolyte gating of carbon nanotube network transistors. Nano Lett 5:905–911CrossRefGoogle Scholar
  56. 56.
    Ha M J, Xia Y, Green AA et al (2010) Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks. ACS Nano 4:4388–4395CrossRefGoogle Scholar
  57. 57.
    Bolotin KI, Sikes K, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRefGoogle Scholar
  58. 58.
    Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145CrossRefGoogle Scholar
  59. 59.
    Kim BJ, Jang H, Lee SK, Hong BH, Ahn JH, Cho JH (2010) High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett 10:3464–3466CrossRefGoogle Scholar
  60. 60.
    Ang PK, Chen W, Wee ATS, Loh KP (2008) Solution-gated epitaxial graphene as pH sensor. J Am Chem Soc 130:14392–14393CrossRefGoogle Scholar
  61. 61.
    Ohno Y, Maehashi K, Yamashiro Y, Matsumoto K (2009) Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett 9:3318–3322CrossRefGoogle Scholar
  62. 62.
    Tsuchiya T, Terabe K, Aono M (2014) In situ and non-volatile bandgap tuning of multilayer graphene oxide in an all-solid-state electric double-layer transistor. Adv Mater 26:1087–1091CrossRefGoogle Scholar
  63. 63.
    Tsuchiya T, Terabe K, Aono M (2014) Micro X-ray photoemission and Raman spectroscopic studies on bandgap tuning of graphene oxide achieved by solid state ionics device. Appl Phys Lett 105:183101CrossRefGoogle Scholar
  64. 64.
    Dhoot AS, Wimbush SC, Benseman T, Macmanus-Driscoll JL, Cooper JR, Friend RH (2010) Increased T c in electrolyte-gated cuprates. Adv Mater 22:2529–2533CrossRefGoogle Scholar
  65. 65.
    Tada H, Nojima T, Nakamura S, Shimotani H, Iwasa Y, Kobayashi N (2009) Preparation of n-type YBa2Cu3Oy films by an electrochemical reaction method J Phys 150:052255Google Scholar
  66. 66.
    Ueno K, Nakamura S, Shimotani H et al (2008) Electric-field-induced superconductivity in an insulator. Nat Mater 7:855–858CrossRefGoogle Scholar
  67. 67.
    Asanuma S, Xiang PH, Yamada H et al (2010) Tuning of the metal-insulator transition in electrolyte-gated NdNiO3 thin films. Appl Phys Lett 97:142110CrossRefGoogle Scholar
  68. 68.
    Ueno K, Nakamura S, Shimotani H et al (2011) Discovery of superconductivity in KTaO3 by electrostatic carrier doping. Nat Nanotechnol 6:408–412CrossRefGoogle Scholar
  69. 69.
    Imada M, Fujimori A, Tokura Y (1998) Metal-insulator transitions. Rev Mod Phys 70:1039CrossRefGoogle Scholar
  70. 70.
    Xiang PH, Asanuma S, Yamada H et al (2011) Strain-mediated phase control and electrolyte-gating of electron-doped manganites. Adv Mater 23:5822–5827CrossRefGoogle Scholar
  71. 71.
    Imada M (1994) Mott transition and transition to incompressible states–variety and universality. J Phys Soc Jpn 63:3059–3077CrossRefGoogle Scholar
  72. 72.
    Scherwitzl R, Zubko P, Lezama IG et al (2010) Electric-field control of the metal-insulator transition in ultrathin NdNiO3 films. Adv Mater 22:5517–5520CrossRefGoogle Scholar
  73. 73.
    Lee M, Williams J, Zhang S, Frisbie CD, Goldhaber-Gordon D (2011) Electrolyte gate-controlled Kondo effect in SrTiO3. Phys Rev Lett 107:256601CrossRefGoogle Scholar
  74. 74.
    Nath R, Raychaudhuri A (2014) Electric double layer gate controlled non-linear transport in a nanostructured functional perovskite oxide film. Appl Phys Lett 104:083515CrossRefGoogle Scholar
  75. 75.
    Ito M, Matsubara Y, Kozuka Y et al (2014) Electric double layer transistors with ferroelectric BaTiO3 channels. Appl Phys Lett 104:222101CrossRefGoogle Scholar
  76. 76.
    Shimizu S, Takahashi KS, Kubota M, Kawasaki M, Tokura Y, Iwasa Y (2014) Gate tuning of anomalous Hall effect in ferromagnetic metal SrRuO3. Appl Phys Lett 105:163509CrossRefGoogle Scholar
  77. 77.
    Fujimoto T, Awaga K (2013) Electric-double-layer field-effect transistors with ionic liquids. Phys Chem Chem Phys 15:8983–9006CrossRefGoogle Scholar
  78. 78.
    Panzer MJ, Frisbie CD (2005) Polymer electrolyte gate dielectric reveals finite windows of high conductivity in organic thin film transistors at high charge carrier densities. J Am Chem Soc 127:6960–6961CrossRefGoogle Scholar
  79. 79.
    Panzer MJ, Frisbie CD (2006) High carrier density and metallic conductivity in poly(3-hexylthiophene) achieved by electrostatic charge injection. Adv Funct Mater 16:1051–1056CrossRefGoogle Scholar
  80. 80.
    Dhoot AS, Yuen JD, Heeney M, McCulloch I, Moses D, Heeger AJ (2006) Beyond the metal-insulator transition in polymer electrolyte gated polymer field-effect transistors. P Natl Acad Sci 103:11834–11837CrossRefGoogle Scholar
  81. 81.
    Takeya J, Yamada K, Hara K et al (2006) High-density electrostatic carrier doping in organic single-crystal transistors with polymer gel electrolyte. Appl Phys Lett 88:112102CrossRefGoogle Scholar
  82. 82.
    Herlogsson L, Crispin X, Robinson ND et al (2007) Low-voltage polymer field-effect transistors gated via a proton conductor. Adv Mater 19:97–101CrossRefGoogle Scholar
  83. 83.
    Herlogsson L, Noh YY, Zhao N, Crispin X, Sirringhaus H, Berggren M (2008) Downscaling of organic field-effect transistors with a polyelectrolyte gate insulator. Adv Mater 20:4708–4713CrossRefGoogle Scholar
  84. 84.
    Panzer MJ, Frisbie CD (2008) Exploiting ionic coupling in electronic devices: electrolyte-gated organic field-effect transistors. Adv Mater 20:3177–3180CrossRefGoogle Scholar
  85. 85.
    Lan L, Xu R, Peng J, Sun M, Zhu X, Cao Y (2009) Dipole-induced organic field-effect transistor gated by conjugated polyelectrolyte. Jpn J Appl Phys 48:080206CrossRefGoogle Scholar
  86. 86.
    Liu J, Herlogsson L, Sawatdee A et al (2010) Vertical polyelectrolyte-gated organic field-effect transistors. Appl Phys Lett 97:103303CrossRefGoogle Scholar
  87. 87.
    Dankerl M, Tosun M, Stutzmann M, Garrido J (2012) Solid polyelectrolyte-gated surface conductive diamond field effect transistors. Appl Phys Lett 100:023510CrossRefGoogle Scholar
  88. 88.
    Lin M-W, Liu L, Lan Q et al (2012) Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with polymer electrolyte. J Phys D Appl Phys 45:345102CrossRefGoogle Scholar
  89. 89.
    Mondal S, Ghimire RR, Raychaudhuri A (2013) Enhancing photoresponse by synergy of gate and illumination in electric double layer field effect transistors fabricated on n-ZnO. Appl Phys Lett 103:231105CrossRefGoogle Scholar
  90. 90.
    Nath R, Raychaudhuri A (2014) Electric double layer gate controlled non-linear transport in a nanostructured functional perovskite oxide film. Appl Phys Lett 104:083515CrossRefGoogle Scholar
  91. 91.
    Fabiano S, Crispin X, Berggren M (2014) Ferroelectric polarization induces electric double layer bistability in electrolyte-gated field-effect transistors. ACS Appl Mater Interface 6:438–442CrossRefGoogle Scholar
  92. 92.
    Wang YY, Burke PJ (2014) Polyelectrolyte multilayer electrostatic gating of graphene field-effect transistors. Nano Res 7:1650–1658CrossRefGoogle Scholar
  93. 93.
    Dobrynin AV, Rubinstein M (2005) Theory of polyelectrolytes in solutions and at surfaces. Proc Natl Acad Sci 30:1049–1118Google Scholar
  94. 94.
    Fabiano S, Braun S, Fahlman M, Crispin X, Berggren M (2014) Effect of gate electrode work-function on source charge injection in electrolyte-gated organic field-effect transistors. Adv Funct Mater 24:695–700CrossRefGoogle Scholar
  95. 95.
    Chen Y, Shih I (2009) Scaling down of organic thin film transistors: short channel effects and channel length-dependent field effect mobility. J Mater Sci 44:280–284. doi: 10.1007/s10853-008-3047-6 CrossRefGoogle Scholar
  96. 96.
    Unni KN, Dabos-Seignon S, Nunzi JM (2006) Influence of the polymer dielectric characteristics on the performance of a quaterthiophene organic field-effect transistor. J Mater Sci 41:317–322. doi: 10.1007/s10853-005-2331-y CrossRefGoogle Scholar
  97. 97.
    Herlogsson L, Cölle M, Tierney S, Crispin X, Berggren M (2010) Low-voltage ring oscillators based on polyelectrolyte-gated polymer thin-film transistors. Adv Mater 22:72–76CrossRefGoogle Scholar
  98. 98.
    Herlogsson L, Crispin X, Tierney S, Berggren M (2011) Polyelectrolyte-gated organic complementary circuits operating at low power and voltage. Adv Mater 23:4684–4689CrossRefGoogle Scholar
  99. 99.
    Yuan HT, Shimotani H, Tsukazaki A, Ohtomo A, Kawasaki M, Iwasa Y (2009) High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids. Adv Funct Mater 19:1046–1053CrossRefGoogle Scholar
  100. 100.
    Uemura T, Hirahara R, Tominari Y, Ono S, Seki S, Takeya J (2008) Electronic functionalization of solid-to-liquid interfaces between organic semiconductors and ionic liquids: realization of very high performance organic single-crystal transistors. Appl Phys Lett 93:263305CrossRefGoogle Scholar
  101. 101.
    Hamedi M, Herlogsson L, Crispin X, Marcilla R, Berggren M, Inganäs O (2009) Fiber-embedded electrolyte-gated field-effect transistors for e-textiles. Adv Mater 21:573–577CrossRefGoogle Scholar
  102. 102.
    Chen F, Qing Q, Xia J, Li J, Tao N (2009) Electrochemical gate-controlled charge transport in graphene in ionic liquid and aqueous solution. J Am Chem Soc 131:9908–9909CrossRefGoogle Scholar
  103. 103.
    Ye J, Inoue S, Kobayashi K et al (2010) Liquid-gated interface superconductivity on an atomically flat film. Nat Mater 9:125–128CrossRefGoogle Scholar
  104. 104.
    Okimoto H, Takenobu T, Yanagi K et al (2010) Low-voltage operation of ink-jet-printed single-walled carbon nanotube thin film transistors. Jpn J Appl Phys 49:02BD09CrossRefGoogle Scholar
  105. 105.
    Yuan HT, Toh M, Morimoto K et al (2011) Liquid-gated electric-double-layer transistor on layered metal dichalcogenide, SnS2. Appl Phys Lett 98:012102CrossRefGoogle Scholar
  106. 106.
    Ye JT, Zhang YJ, Matsuhashi Y et al (2012) Gate-induced superconductivity in layered-material-based electric double layer transistors. J Phys 400:022139Google Scholar
  107. 107.
    Zhou Y, Ramanathan S (2012) Relaxation dynamics of ionic liquid—VO2 interfaces and influence in electric double-layer transistors. J Appl Phys 111:084508CrossRefGoogle Scholar
  108. 108.
    Chen Z, Yuan H, Wang X et al (2013) Ionic liquid gated electric-double-layer transistors based on Mg-doped InN epitaxial films. Appl Phys Lett 103:253508CrossRefGoogle Scholar
  109. 109.
    Katase T, Hiramatsu H, Kamiya T, Hosono H (2014) Electric double-layer transistor using layered iron selenide Mott insulator TlFe1.6Se2. Proc Natl Acad Sci 111:3979–3983CrossRefGoogle Scholar
  110. 110.
    Ameri SK, Singh PK, Sonkusale SR (2014) Liquid gated three dimensional graphene network transistor. Carbon 79:572–577CrossRefGoogle Scholar
  111. 111.
    Bubel S, Menyo MS, Mates TE, Waite JH, Chabinyc ML (2015) Schmitt trigger using a self-healing ionic liquid gated transistor. Adv Mater. doi: 10.1002/adma.201500556 Google Scholar
  112. 112.
    Ono S, Miwa K, Seki S, Takeya J (2009) A comparative study of organic single-crystal transistors gated with various ionic-liquid electrolytes. Appl Phys Lett 94:063301CrossRefGoogle Scholar
  113. 113.
    Fujimoto T, Matsushita MM, Awaga K (2012) Ionic-liquid component dependence of carrier injection and mobility for electric-double-layer organic thin-film transistors. J Phys Chem C 116:5240–5245CrossRefGoogle Scholar
  114. 114.
    Veres J, Ogier SD, Leeming SW, Cupertino DC, Mohialdin Khaffaf S (2003) Low-k insulators as the choice of dielectrics in organic field-effect transistors. Adv Funct Mater 13:199–204CrossRefGoogle Scholar
  115. 115.
    Stassen A, De Boer R, Iosad N, Morpurgo A (2004) Influence of the gate dielectric on the mobility of rubrene single-crystal field-effect transistors. Appl Phys Lett 85:3899–3901CrossRefGoogle Scholar
  116. 116.
    Cho JH, Lee J, Xia Y et al (2008) Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat Mater 7:900–906CrossRefGoogle Scholar
  117. 117.
    Braga D, Gutiérrez Lezama I, Berger H, Morpurgo AF (2012) Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett 12:5218–5223CrossRefGoogle Scholar
  118. 118.
    Yuan H, Liu H, Shimotani H et al (2011) Liquid-gated ambipolar transport in ultrathin films of a topological insulator Bi2Te3. Nano Lett 11:2601–2605CrossRefGoogle Scholar
  119. 119.
    Lee J, Panzer MJ, He Y, Lodge TP, Frisbie CD (2007) Ion gel gated polymer thin-film transistors. J Am Chem Soc 129:4532–4533CrossRefGoogle Scholar
  120. 120.
    Eguchi R, Senda M, Uesugi E et al (2013) Electric-double-layer transistors with thin crystals of FeSe1−xTex (x = 0.9 and 1.0). Appl Phys Lett 102:103506CrossRefGoogle Scholar
  121. 121.
    Yomogida Y, Pu J, Shimotani H et al (2012) Ambipolar organic single-crystal transistors based on ion gels. Adv Mater 24:4392–4397CrossRefGoogle Scholar
  122. 122.
    Lee SK, Kim BJ, Jang H et al (2011) Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett 11:4642–4646CrossRefGoogle Scholar
  123. 123.
    Lee KH, Kang MS, Zhang S, Gu Y, Lodge TP, Frisbie CD (2012) “Cut and stick” rubbery ion gels as high capacitance gate dielectrics. Adv Mater 24:4457–4462CrossRefGoogle Scholar
  124. 124.
    Xia Y, Zhang W, Ha M et al (2010) Printed sub-2 V gel-electrolyte-gated polymer transistors and circuits. Adv Funct Mater 20:587–594CrossRefGoogle Scholar
  125. 125.
    Kergoat L, Herlogsson L, Braga D et al (2010) A water-gate organic field-effect transistor. Adv Mater 22:2565–2569CrossRefGoogle Scholar
  126. 126.
    Mulla MY, Tuccori E, Magliulo M et al (2015) Capacitance-modulated transistor detects odorant binding protein chiral interactions. Nat Commun 6:6010CrossRefGoogle Scholar
  127. 127.
    Deml AM, Bunge AL, Reznikov MA, Kolessov A, O’Hayre RP (2012) Progress toward a solid-state ionic field effect transistor. J Appl Phys 111:074511CrossRefGoogle Scholar
  128. 128.
    Chiragwandi Z, Nur O, Willander M, Calander N (2003) Dc characteristics of a nanoscale water-based transistor. Appl Phys Lett 83:5310–5312CrossRefGoogle Scholar
  129. 129.
    Zhong C, Deng Y, Roudsari AF, Kapetanovic A, Anantram M, Rolandi M (2011) A polysaccharide bioprotonic field-effect transistor. Nat Commun 2:476CrossRefGoogle Scholar
  130. 130.
    Sun J, Wan Q, Lu A, Jiang J (2009) Low-voltage electric-double-layer paper transistors gated by microporous SiO2 processed at room temperature. Appl Phys Lett 95:222108CrossRefGoogle Scholar
  131. 131.
    Jiang J, Wan Q, Sun J, Lu A (2009) Ultralow-voltage transparent electric-double-layer thin-film transistors processed at room-temperature. Appl Phys Lett 95:152114CrossRefGoogle Scholar
  132. 132.
    Lu A, Sun J, Jiang J, Wan Q (2009) Microporous SiO2 with huge electric-double-layer capacitance for low-voltage indium tin oxide thin-film transistors. Appl Phys Lett 95:222905CrossRefGoogle Scholar
  133. 133.
    Dou W, Sun J, Jiang J, Lu A, Wan Q (2010) Low-voltage oxide homojunction electric-double-layer transistors gated by ion-incorporated inorganic solid electrolytes. Jpn J Appl Phys 49:110201CrossRefGoogle Scholar
  134. 134.
    Jiang J, Sun J, Zhou B, Lu A, Wan Q (2010) Vertical low-voltage oxide transistors gated by microporous SiO2/LiCl composite solid electrolyte with enhanced electric-double-layer capacitance. Appl Phys Lett 97:052104CrossRefGoogle Scholar
  135. 135.
    Liu H, Sun J, Tang Q, Wan Q (2010) Ultralow-voltage electric double-layer SnO2 nanowire transistors gated by microporous SiO2-based solid electrolyte. J Phys Chem C 114:12316–12319CrossRefGoogle Scholar
  136. 136.
    Jiang J, Dai M, Sun J, Zhou B, Lu A, Wan Q (2011) Electrostatic modification of oxide semiconductors by electric double layers of microporous SiO2-based solid electrolyte. J Appl Phys 109:054501CrossRefGoogle Scholar
  137. 137.
    Zhang H, Guo L, Wan Q (2013) Nanogranular Al2O3 proton conducting films for low-voltage oxide-based homojunction thin-film transistors. J Mater Chem C 1:2781–2786CrossRefGoogle Scholar
  138. 138.
    Zhu L, Sun J, Wu G, Zhang H, Wan Q (2013) Self-assembled dual in-plane gate thin-film transistors gated by nanogranular SiO2 proton conductors for logic applications. Nanoscale 5:1980–1985CrossRefGoogle Scholar
  139. 139.
    Wu G, Zhang H, Zhou J, Huang A, Wan Q (2013) Proton conducting zeolite films for low-voltage oxide-based electric-double-layer thin-film transistors and logic gates. J Mater Chem C 1:5669–5674CrossRefGoogle Scholar
  140. 140.
    Wu G, Wan X, Yang Y, Jiang S (2014) Lateral-coupling coplanar-gate oxide-based thin-film transistors on bare paper substrates. J Phys D Appl Phys 47:495101CrossRefGoogle Scholar
  141. 141.
    Liu YH, Zhu LQ, Shi Y, Wan Q (2014) Proton conducting sodium alginate electrolyte laterally coupled low-voltage oxide-based transistors. Appl Phys Lett 104:133504CrossRefGoogle Scholar
  142. 142.
    Fan R, Huh S, Yan R, Arnold J, Yang P (2008) Gated proton transport in aligned mesoporous silica films. Nat Mater 7:303–307CrossRefGoogle Scholar
  143. 143.
    Shen H, Maekawa H, Kawamura J, Yamamura T (2006) Development of high protonic conductors based on amorphous mesoporous alumina. Solid State Ionics 177:2403–2406CrossRefGoogle Scholar
  144. 144.
    Sierka M, Sauer J (2001) Proton mobility in chabazite, faujasite, and ZSM-5 zeolite catalysts. comparison based on ab initio calculations. J Phys Chem B 105:1603–1613CrossRefGoogle Scholar
  145. 145.
    Scherrer B, Schlupp MV, Stender D et al (2013) On proton conductivity in porous and dense yttria stabilized zirconia at low temperature. Adv Funct Mater 23:1957–1964CrossRefGoogle Scholar
  146. 146.
    Avila-Paredes HJ, Barrera-Calva E, Anderson HU et al (2010) Room-temperature protonic conduction in nanocrystalline films of yttria-stabilized zirconia. J Mater Chem 20:6235–6238CrossRefGoogle Scholar
  147. 147.
    Hirai T, Teramoto K, Nagashima K et al (1996) Crystal and electrical characterizations of oriented yttria-stabilized zirconia buffer layer for the metal/ferroelectric/insulator/semiconductor field-effect transistor. Jpn J Appl Phys 35:4016CrossRefGoogle Scholar
  148. 148.
    Nogami M, Nagao R, Wong C, Kasuga T, Hayakawa T (1999) High proton conductivity in porous P2O5-SiO2 glasses. J Phys Chem B 103:9468–9472CrossRefGoogle Scholar
  149. 149.
    Skinner SJ, Kilner JA (2003) Oxygen ion conductors. Mater Today 6:30–37CrossRefGoogle Scholar
  150. 150.
    Jeong J, Aetukuri N, Graf T, Schladt TD, Samant MG, Parkin SS (2013) Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation. Science 339:1402–1405CrossRefGoogle Scholar
  151. 151.
    Tsuchiya T, Terabe K, Aono M (2013) All-solid-state electric-double-layer transistor based on oxide ion migration in Gd-doped CeO2 on SrTiO3 single crystal. Appl Phys Lett 103:073110CrossRefGoogle Scholar
  152. 152.
    Onishi T (2009) The effects of counter cation on lithium ion conductivity: in the case of the perovskite-type titanium oxides of La2/3−xLi3xTiO3 and LaTiO3. Solid State Ionics 180:592–597CrossRefGoogle Scholar
  153. 153.
    Inaguma Y, Liquan C, Itoh M et al (1993) High ionic conductivity in lithium lanthanum titanate. Solid State Commun 86:689–693CrossRefGoogle Scholar
  154. 154.
    Zhang Q, Schmidt N, Lan J, Kim W, Cao G (2014) A facile method for the synthesis of the Li0.3La0.57TiO3 solid state electrolyte. Chem Commun 50:5593–5596CrossRefGoogle Scholar
  155. 155.
    Inaguma Y, Yu J, Shan YJ, Itoh M, Nakamuraa T (1995) The effect of the hydrostatic pressure on the ionic conductivity in a perovskite lanthanum lithium titanate. J Electrochem Soc 142:L8–L11CrossRefGoogle Scholar
  156. 156.
    Yashima M, Itoh M, Inaguma Y, Morii Y (2005) Crystal structure and diffusion path in the fast lithium-ion conductor La0.62Li0.16TiO3. J Am Chem Soc 127:3491–3495CrossRefGoogle Scholar
  157. 157.
    Katsumata T, Inaguma Y, Itoh M, Kawamura K (2002) Influence of covalent character on high Li ion conductivity in a perovskite-type Li ion conductor: prediction from a molecular dynamics simulation of La0.6Li0.2TiO3. Chem Mater 14:3930–3936CrossRefGoogle Scholar
  158. 158.
    Qian D, Xu B, Cho H-M, Hatsukade T, Carroll KJ, Meng YS (2012) Lithium lanthanum titanium oxides: a fast ionic conductive coating for lithium-ion battery cathodes. Chem Mater 24:2744–2751CrossRefGoogle Scholar
  159. 159.
    Li L, Yu Y, Ye GJ et al (2014) Black phosphorus field-effect transistors. Nat Nanotechnol 9:372–377CrossRefGoogle Scholar
  160. 160.
    Kang SJ, Kocabas C, Ozel T et al (2007) High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat Nanotechnol 2:230–236CrossRefGoogle Scholar
  161. 161.
    Szafranek BN, Schall D, Otto M, Neumaier D, Kurz H (2011) High on/off ratios in bilayer graphene field effect transistors realized by surface dopants. Nano Lett 11:2640–2643CrossRefGoogle Scholar
  162. 162.
    Das A, Pisana S, Chakraborty B et al (2008) Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol 3:210–215CrossRefGoogle Scholar
  163. 163.
    Lee HS, Min SW, Chang YG et al (2012) MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett 12:3695–3700CrossRefGoogle Scholar
  164. 164.
    Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M, Hosono H (2003) Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300:1269–1272CrossRefGoogle Scholar
  165. 165.
    Seo SJ, Choi CG, Hwang YH, Bae BS (2009) High performance solution-processed amorphous zinc tin oxide thin film transistor. J Phys D Appl Phys 42:035106CrossRefGoogle Scholar
  166. 166.
    Ju S, Lee K, Yoon M-H, Facchetti A, Marks TJ, Janes DB (2007) High performance ZnO nanowire field effect transistors with organic gate nanodielectrics: effects of metal contacts and ozone treatment. Nanotechnol 18:155201CrossRefGoogle Scholar
  167. 167.
    Park K-B, Seon J-B, Kim GH et al (2010) High electrical performance of wet-processed indium zinc oxide thin-film transistors. IEEE Electron Dev Lett 31:311–313CrossRefGoogle Scholar
  168. 168.
    Zou X, Fang G, Yuan L, Li M, Guan W, Zhao X (2010) Top-gate low-threshold voltage thin-film transistor grown on substrate using a high-HfON gate dielectric. IEEE Electron Dev Lett 31:827–829CrossRefGoogle Scholar
  169. 169.
    Kim Y-H, Kim K-H, Oh MS et al (2010) Ink-jet-printed zinc–tin–oxide thin-film transistors and circuits with rapid thermal annealing process. IEEE Electron Dev Lett 31:836–838CrossRefGoogle Scholar
  170. 170.
    Fortunato E, Martins R (2011) Where science fiction meets reality? With oxide semiconductors! Phys Status Solidi R 5:336–339CrossRefGoogle Scholar
  171. 171.
    Lembke D, Bertolazzi S, Kis A (2015) Single-layer MoS2 electronics. Acc Chem Res 48:100–110CrossRefGoogle Scholar
  172. 172.
    Zhang S, Yan Z, Li Y, Chen Z, Zeng H (2015) Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap Transitions. Angew Chem Int Ed 127:3155–3158CrossRefGoogle Scholar
  173. 173.
    Xu X, Gabor NM, Alden JS, van der Zande AM, McEuen PL (2009) Photo-thermoelectric effect at a graphene interface junction. Nano Lett 10:562–566CrossRefGoogle Scholar
  174. 174.
    Ohta H, Sato Y, Kato T et al (2010) Field-induced water electrolysis switches an oxide semiconductor from an insulator to a metal. Nat Commun 1:118CrossRefGoogle Scholar
  175. 175.
    Grosse KL, Bae M-H, Lian F, Pop E, King WP (2011) Nanoscale Joule heating Peltier cooling and current crowding at graphene-metal contacts. Nat Nanotechnol 6:287–290CrossRefGoogle Scholar
  176. 176.
    Bubnova O, Berggren M, Crispin X (2012) Tuning the thermoelectric properties of conducting polymers in an electrochemical transistor. J Am Chem Soc 134:16456–16459CrossRefGoogle Scholar
  177. 177.
    Ohta H (2013) Electric-field thermopower modulation in SrTiO3-based field-effect transistors. J Mater Sci 48:2797–2805. doi: 10.1007/s10853-012-6856-6 CrossRefGoogle Scholar
  178. 178.
    Buscema M, Barkelid M, Zwiller V, van der Zant HS, Steele GA, Castellanos-Gomez A (2013) Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett 13:358–363CrossRefGoogle Scholar
  179. 179.
    Takayanagi R, Fujii T, Asamitsu A (2014) Control of thermoelectric properties of ZnO using electric double-layer transistor structure. Jpn J Appl Phys 53:111101CrossRefGoogle Scholar
  180. 180.
    Yanagi K, Kanda S, Oshima Y et al (2014) Tuning of the thermoelectric properties of one-dimensional material networks by electric double layer techniques using ionic liquids. Nano Lett 14:6437–6442CrossRefGoogle Scholar
  181. 181.
    Ohtaki M, Koga H, Tokunaga T, Eguchi K, Arai H (1995) Electrical transport properties and high-temperature thermoelectric performance of (Ca0.9M0.1)MnO3 (M = Y, La, Ce, Sm, In, Sn, Sb, Pb, Bi). J Solid State Chem 120:105–111CrossRefGoogle Scholar
  182. 182.
    Hor Y, Richardella A, Roushan P et al (2009) p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Phys Rev B 79:195208CrossRefGoogle Scholar
  183. 183.
    Peranio N, Eibl O, Nurnus J (2006) Structural and thermoelectric properties of epitaxially grown Bi2Te3 thin films and superlattices. J Appl Phys 100:114306CrossRefGoogle Scholar
  184. 184.
    Smith RJ, King PJ, Lotya M et al (2011) Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv Mater 23:3944–3948CrossRefGoogle Scholar
  185. 185.
    Steinberg H, Gardner DR, Lee YS, Jarillo-Herrero P (2010) Surface state transport and ambipolar electric field effect in Bi2Se3 nanodevices. Nano Lett 10:5032–5036CrossRefGoogle Scholar
  186. 186.
    Goldman AM, Marković N (2008) Superconductor-insulator transitions in the two-dimensional limit. Phys Today 51:39–44CrossRefGoogle Scholar
  187. 187.
    Parendo KA, Tan KSB, Bhattacharya A, Eblen-Zayas M, Staley N, Goldman A (2005) Electrostatic tuning of the superconductor-insulator transition in two dimensions. Phys Rev Lett 94:197004CrossRefGoogle Scholar
  188. 188.
    Bollinger AT, Dubuis G, Yoon J, Pavuna D, Misewich J, Božović I (2011) Superconductor-insulator transition in La2−xSrxCuO4 at the pair quantum resistance. Nature 472:458–460CrossRefGoogle Scholar
  189. 189.
    Lee Y, Frydman A, Chen T, Skinner B, Goldman A (2013) Electrostatic tuning of the properties of disordered indium-oxide films near the superconductor-insulator transition. Phys Rev B 88:024509CrossRefGoogle Scholar
  190. 190.
    Chiba D, Fukami S, Shimamura K, Ishiwata N, Kobayashi K, Ono T (2011) Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nat Mater 10:853–856CrossRefGoogle Scholar
  191. 191.
    Yamada Y, Ueno K, Fukumura T et al (2011) Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. Science 332:1065–1067CrossRefGoogle Scholar
  192. 192.
    Shi J, Ha SD, Zhou Y, Schoofs F, Ramanathan S (2013) A correlated nickelate synaptic transistor. Nat Commun 4:2676Google Scholar
  193. 193.
    Zhu LQ, Wan CJ, Guo LQ, Shi Y, Wan Q (2014) Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat Commun 5:3158Google Scholar
  194. 194.
    Heller I, Chatoor S, Männik J et al (2010) Influence of electrolyte composition on liquid-gated carbon nanotube and graphene transistors. J Am Chem Soc 132:17149–17156CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations