Skip to main content

Advertisement

Log in

Controllable synthesis of W18O49 nanowire arrays and their application in electrochromic devices

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Tungsten oxide nanowire arrays as effective electrochromic working electrodes were fabricated on seed-free FTO glass through a facile solvothermal process. Polyethylene glycol was used as the structure-directing agent to control the crystal growth because of selective absorption on the facet of tungsten oxide crystals. Phase identification and growth mechanism of monoclinic W18O49 nanowire arrays are also extensively discussed. Uniform transparent W18O49 nanowire arrays film exhibits remarkable performance of electrochromic properties, which include high contrast (49.64 % at 632.8 nm), high electrochromic stability (>3000 CV cycles), and fast coloration/bleaching response (t c ~ 7.9 s, t b ~ 1.4 s). These properties of the W18O49 nanowire arrays film endow its promising practical applications in large-area smart windows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Solis JL, Saukko S, Kish L, Granqvist CG, Lantto V (2001) Semiconductor gas sensors based on nanostructured tungsten oxide. Thin Solid Films 391:255–260

    Article  Google Scholar 

  2. An S, Park S, Ko H, Lee C (2012) Enhanced NO2 gas sensing properties of WO3 nanorods encapsulated with ZnO. Appl Phys A 108:53–58

    Article  Google Scholar 

  3. Baeck SH, Choi KS, Jaramillo TF, Stucky GD, Mcfarland EW (2003) Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films. Adv Mater 15:1269–1273

    Article  Google Scholar 

  4. Nandiyanto ABD, Arutanti O, Ogi T, Iskandar F, Kim TO, Okuyama K (2013) Synthesis of spherical macroporous WO3 particles and their high photocatalytic performance. Chem Eng Sci 101:523–532

    Article  Google Scholar 

  5. Li CP, Engtrakul C, Tenent RC, Wolden CA (2015) Scalable synthesis of improved nanocrystalline, mesoporous tungsten oxide films with exceptional electrochromic performance. Sol Energy Mater Sol C 132:6–14

    Article  Google Scholar 

  6. Ren Y, Gao Y, Zhao G (2015) Facile single-step fabrications of electrochromic WO3 micro-patterned films using the novel photosensitive sol–gel method. Ceram Int 41:403–408

    Article  Google Scholar 

  7. Moshofsky B, Mokari T (2014) Electrochromic active layers from ultrathin nanowires of tungsten oxide. J Mater Chem C 2:3556–3561

    Article  Google Scholar 

  8. Wang J, Khoo E, Lee PS, Ma J (2008) Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods. J Phys Chem C 112:14306–14312

    Article  Google Scholar 

  9. Ou JZ, Balendhran S, Field MR, McCulloch DG, Zoolfakar AS, Rani RA, Zhuiykov S, O’Mullane AP, Kalantar-zadeh K (2012) The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties. Nanoscale 4:5980–5988

    Article  Google Scholar 

  10. Gui Y, Blackwood DJ (2014) Electrochromic enhancement of WO3-TiO2 composite films produced by electrochemical anodization. J Electrochrm Soc 161:191–201

    Article  Google Scholar 

  11. Kulkarni SB, Mane AT, Navale ST, Kulkarni PS, Mulik RN, Patil VB (2015) Synthesis, structural, compositional, morphological and optoelectronic properties of tungsten oxide thin films. J Mater Sci 26:1087–1096

    Google Scholar 

  12. Alsawafta M, Golestani YM, Phonemac T, Badilescu S, Stancovski V, Truong VV (2014) Electrochromic properties of sol-gel synthesized macroporous tungsten oxide films doped with gold nanoparticles. J Electrochem Soc 161:276–283

    Article  Google Scholar 

  13. Madhavi V, Kondaiah P, Hussain OM, Uthanna S (2014) Structural, optical and electrochromic properties of RF magnetron sputtered WO3 thin films. Phys B 454:141–147

    Article  Google Scholar 

  14. Tong M, Dai G, Wu Y, He X, Gao D (2001) WO3 thin film prepared by PECVD technique and its gas sensing properties to NO2. J Mater Sci 36:2535–2538

    Article  Google Scholar 

  15. Denayer J, Aubry P, Bister G, Spronck G, Colson P, Vertruyen B, Lardot V, Cambier F, Henrist C, Cloots R (2014) Improved coloration contrast and electrochromic efficiency of tungsten oxide films thanks to a surfactant-assisted ultrasonic spray pyrolysis process. Sol Energy Mater Sol C 130:623–628

    Article  Google Scholar 

  16. Navarro JRG, Mayence A, Andrade J, Lerouge F, Chaput F, Oleynikov P, Bergstro L, Parola S, Pawlicka A (2014) WO3 nanorods created by self-assembly of highly crystalline nanowires under hydrothermal conditions. Langmuir 30:10487–10492

    Article  Google Scholar 

  17. Kondalkar VV, Kharade RR, Mali SS, Mane RM, Patil PB, Patil PS, Choudhury S, Bhosale PN (2014) Nanobrick-like WO3 thin films: hydrothermal synthesis and electrochromic application. Superlattice Microstruct 73:290–295

    Article  Google Scholar 

  18. Kondalkar VV, Mali SS, Kharade RR, Khot KV, Patil PB, Mane RM, Choudhury S, Patil PS, Hong CK, Kim JH, Bhosale PN (2015) High performing smart electrochromic device based on honeycomb nanostructured h-WO3 thin films: hydrothermal assisted synthesis. Dalton Trans 44:2788–2800

    Article  Google Scholar 

  19. Guo C, Yin S, Yan M, Kobayashi M, Kakihana M, Sato T (2012) Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties. Inorg Chem 51:4763–4771

    Article  Google Scholar 

  20. Cai GF, Tu JP, Zhou D, Wang XL, Gu CD (2014) Growth of vertically aligned hierarchical WO3 nano-architecture arrays on transparent conducting substrates without standing electrochromic performance. Sol Energy Mater Sol C 124:103–110

    Article  Google Scholar 

  21. Liu J, Huang X, Sulieman KM, Sun F, He X (2006) Solution-based growth and optical properties of self-assembled monocrystalline ZnO ellipsoids. J Phys Chem B 110:10612–10618

    Article  Google Scholar 

  22. Harraz FA (2008) Polyethylene glycol-assisted hydrothermal growth of magnetite nanowires: synthesis and magnetic properties. Phys E 40:3131–3136

    Article  Google Scholar 

  23. Li Z, Xiong Y, Xie Y (2003) Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route. Inorg Chem 42:8105–8109

    Article  Google Scholar 

  24. Li H, Shi G, Wang H, Zhang Q, Li Y (2014) Self-seeded growth of nest-like hydrated tungsten trioxide film directly on FTO substrate for highly enhanced electrochromic performance. J Mater Chem A 2:11305–11310

    Article  Google Scholar 

  25. Remškar M, Kovac J, Viršek M, Mrak M, Jesih A, Seabaugh A (2007) W5O14 nanowires. Adv Funct Mater 17:1974–1978

    Article  Google Scholar 

  26. Zhou H, Shi Y, Dong Q, Wang Y, Zhu C, Wang L, Wang N, Wei Y, Tao S, Ma T (2014) Interlaced W18O49 nanofibers as a superior catalyst for the counter electrode of highly efficient dye sensitized solar cells. J Mater Chem A 2:4347–4354

    Article  Google Scholar 

  27. Xi G, Ouyang S, Li P, Ye J, Ma Q, Su N, Bai H, Wang C (2012) Ultrathin W18O49 nanowires with diameters below 1 nm: synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew Chem Int Ed 51:2395–2399

    Article  Google Scholar 

  28. Chen D, Ge L, Yin L, Shi H, Yang D, Yang J, Zhang R, Shao G (2014) Solvent-regulated solvothermal synthesis and morphology-dependent gas-sensing performance of low-dimensional tungsten oxide nanocrystals. Sens Actuat B 205:391–400

    Article  Google Scholar 

  29. Lu CH, Hon MH, Kuan CY, Leu IC (2014) Preparation of WO3 nanorods by a hydrothermal method for electrochromic device. Jpn J Appl Phys 53:06JG08-1–06JG08-5

    Google Scholar 

  30. Wang J, Khoo E, Lee PS, Ma J (2009) Controlled synthesis of WO3 nanorods and their electrochromic properties in H2SO4 electrolyte. J Phys Chem C 113:9655–9658

    Article  Google Scholar 

  31. Jiao Z, Wang X, Wang J, Ke L, Demir HV, Koh TW, Sun XW (2012) Efficient synthesis of plate-like crystalline hydrated tungsten trioxide thin films with highly improved electrochromic performance. Chem Commun 48:365–367

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of the Ministry of Science and Technology (MOST) Grant funded by Taiwan government through MOST 103-2221-E-006-089 and NSC 102-2221-E-024-003-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ing-Chi Leu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, CH., Hon, M.H., Kuan, CY. et al. Controllable synthesis of W18O49 nanowire arrays and their application in electrochromic devices. J Mater Sci 50, 5739–5745 (2015). https://doi.org/10.1007/s10853-015-9119-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9119-5

Keywords