Skip to main content

Strategies to suppress cation vacancies in metal oxide alloys: consequences for solar energy conversion

Abstract

First-row transition metal oxides (TMOs) are promising alternative materials for inexpensive and efficient solar energy conversion. However, their conversion efficiency can be deleteriously affected by material imperfections, such as atomic vacancies. In this work, we provide examples showing that in some iron-containing TMOs, iron cation vacancy formation can be suppressed via alloying. We calculate within density functional theory+U theory the iron vacancy formation energy in binary rock-salt oxide alloys that contain iron, manganese, nickel, zinc, and/or magnesium. We demonstrate that formation of iron vacancies is less favorable if we choose to alloy iron(II) oxide with metals that cannot readily accept vacancy-generated holes, e.g., magnesium, manganese, nickel, or zinc. Since there are less available sites for holes and the holes are forced to reside on iron cations, the driving force for iron vacancy formation decreases. These results are consistent with an experiment observing a sharp drop in cation vacancy concentration upon alloying iron(II) oxide with manganese.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Coker EN, Rodriguez MA, Ambrosini A, Miller JE, Stechel EB (2012) Using in situ techniques to probe high-temperature reactions: thermochemical cycles for the production of synthetic fuels from CO2 and water. Powder Diffr 27:117–125

    Article  Google Scholar 

  2. Trotochaud L, Mills TJ, Boettcher SW (2013) An optocatalytic model for semiconductor–catalyst water-splitting photoelectrodes based on in situ optical measurements on operational catalysts. J Phys Chem Lett 4:931–935

    Article  Google Scholar 

  3. Sivula K, Le Formal F, Grätzel M (2011) Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4:432–449

    Article  Google Scholar 

  4. Wei HM, Gong HB, Chen L, Zi M, Cao BQ (2012) Photovoltaic efficiency enhancement of Cu2O solar cells achieved by controlling homojunction orientation and surface microstructure. J Phys Chem C 116:10510–10515

    Article  Google Scholar 

  5. Liao P, Toroker MC, Carter EA (2011) Electron transport in pure and doped hematite. Nano Lett 11:1775–1781

    Article  Google Scholar 

  6. Caspary Toroker M, Carter EA (2012) Hole transport in nonstoichiometric and doped wüstite. J Phys Chem C 116:17403–17413

    Article  Google Scholar 

  7. Caspary Toroker M, Carter EA (2013) Transition metal oxide alloys as potential solar energy conversion materials. J Mater Chem A 1:2474–2484

    Article  Google Scholar 

  8. Kanan DK, Carter EA (2012) Band gap engineering of MnO via ZnO alloying: a potential new visible-light photocatalyst. J Phys Chem C 116:9876–9887

    Article  Google Scholar 

  9. Alidoust N, Toroker MC, Keith JA, Carter EA (2014) Significant reduction in NiO band gap upon formation of LixNi1−xO alloys: applications to solar energy conversion. ChemSusChem 7:195–201

    Article  Google Scholar 

  10. Engel J, Tuller HL (2014) The electrical conductivity of thin film donor doped hematite: from insulator to semiconductor by defect modulation. Phys Chem Chem Phys 16:11374–11380

    Article  Google Scholar 

  11. Koo B, Xiong H, Slater MD et al (2012) Hollow iron oxide nanoparticles for application in lithium ion batteries. Nano Lett 12:2429–2435

    Article  Google Scholar 

  12. Stamatiou A, Loutzenhiser PG, Steinfeld A (2009) Solar syngas production via H2O/CO2-splitting thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions†. Chem Mater 22:851–859

    Article  Google Scholar 

  13. Mor GK, Prakasam HE, Varghese OK, Shankar K, Grimes CA (2007) Vertically oriented Ti–Fe–O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Lett 7:2356–2364

    Article  Google Scholar 

  14. Wang G, Wang H, Ling Y et al (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11:3026–3033

    Article  Google Scholar 

  15. Nowotny J, Sorrell CC (1997) Key engineering materials: electrical properties of oxide materials. Trans Tech Publications Ltd., Zurich, pp 125–126

    Google Scholar 

  16. Kresse G, Hafner J (1993) Ab initio molecular dynamics for open-shell transition metals. Phys Rev B 48:13115–13118

    Article  Google Scholar 

  17. Kresse G, Furthmüller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  Google Scholar 

  18. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  Google Scholar 

  19. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  20. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  21. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  22. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys Rev B 57:1505–1509

    Article  Google Scholar 

  23. Mosey NJ, Liao P, Carter EA (2008) Rotationally invariant ab initio evaluation of coulomb and exchange parameters for DFT+U calculations. J Chem Phys 129:014103–014115

    Article  Google Scholar 

  24. Schwerdtfeger K, Muan A (1967) Equilibria in the system Fe-Mn-O involving “(Fe, Mn) O” and (Fe, Mn)3O4 solid solutions. Trans Metall Soc AIME 239:1114–1119

    Google Scholar 

  25. Grutzeck MW, Muan A (1992) Phase relations in the system iron oxide–Nio–SiO2 under strongly reducing conditions. J Am Ceram Soc 75:1351–1356

    Article  Google Scholar 

  26. Jak E, Zhao BJ, Hayes PC (2000) Experimental study of phase equilibria in the systems Fe-Zn-O and Fe-Zn-Si-O at metallic iron saturation. Metall Mater Trans B 31B:1195–1201

    Article  Google Scholar 

  27. Fabrichnaya OB (2001) CALPHAD. Comput Coupling Phase Diagrams Thermochem 24:113–131

    Article  Google Scholar 

  28. Broussard L (1969) Disproportionation of wustite. J Phys Chem 73:1848–1854

    Article  Google Scholar 

  29. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  Google Scholar 

  30. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  31. Caspary Toroker M, Kanan DK, Alidoust N, Isseroff LY, Carter EA (2011) First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes. Phys Chem Chem Phys 13:16644–16654

    Article  Google Scholar 

  32. Blöchl PE, Jepsen O, Andersen OK (1994) Improved tetrahedron method for brillouin-zone integrations. Phys Rev B 49:16223–16233

    Article  Google Scholar 

  33. Jiang DE, Carter EA (2003) Adsorption and diffusion energetics of hydrogen atoms on fe(1 1 0) from first principles. Surf Sci 547:85–98

    Article  Google Scholar 

  34. Bader RFW (1985) Atoms in molecules. Acc Chem Res 18:9–15

    Article  Google Scholar 

  35. Togo A, Oba F, Tanaka I (2008) First-principles calculations of the ferroelastic transition between rutile-type and cacl_{2}-type sio_{2} at high pressures. Phys Rev B 78:134106

    Article  Google Scholar 

  36. Kittel C (1996) Introduction to solid state physics, 7th edn. Wiley, New York

    Google Scholar 

  37. Singh DJ, Pickett WE, Krakauer H (1991) Gradient-corrected density functionals: full-potential calculations for iron. Phys Rev B 43:11628–11634

    Article  Google Scholar 

  38. Wang CS, Klein BM, Krakauer H (1985) Theory of magnetic and structural ordering in iron. Phys Rev Lett 54:1852–1855

    Article  Google Scholar 

  39. Cort G, Taylor RD, Willis JO (1982) Search for magnetism in hcp epsilon-Fe. J Appl Phys 53:2064–2065

    Article  Google Scholar 

  40. Alidoust N, Toroker MC, Carter EA (2014) Revisiting photoemission and inverse photoemission spectra of nickel oxide from first principles: implications for solar energy conversion. J Phys Chem B 118:7963–7971

    Article  Google Scholar 

  41. Tang W, Sanville E, Henkelman G (2009) A grid-based bader analysis algorithm without lattice bias. J Phys Condens Matter 21:084204

    Article  Google Scholar 

  42. Pavone M, Ritzmann AM, Carter EA (2011) Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials. Energy Environ Sci 4:4933–4937

    Article  Google Scholar 

  43. Kim JH, Li X, Wang L-S et al (2001) Vibrationally resolved photoelectron spectroscopy of MgO- and ZnO- and the low-lying electronic states of MgO, MgO-, and ZnO. J Phys Chem A 105:5709–5718

    Article  Google Scholar 

  44. Kang H, Beauchamp JL (1986) Gas-phase studies of alkene oxidation by transition-metal oxides. Ion-beam studies of CrO+. J Am Chem Soc 108:5663–5668

    Article  Google Scholar 

  45. Ohnishi S, Mizutani H (1978) Crystal field effect on bulk moduli of transition metal oxides. J Geophys Res 83:1852–1856

    Article  Google Scholar 

  46. Moormann H, Kohl D, Heiland G (1979) Work function and band bending on clean cleaved zinc oxide surfaces. Surf Sci 80:261–264

    Article  Google Scholar 

  47. Roessler DM, Walker WC (1967) Electronic spectrum and ultraviolet optical properties of crystalline MgO. Phys Rev 159:733–738

    Article  Google Scholar 

  48. Nowotny J, Sikora I (1978) Surface electrical properties of the wustite phase. J Electrochem Soc 125:781–786

    Article  Google Scholar 

  49. Fujimori A, Kimizuka N, Akahane T et al (1990) Electronic structure of MnO. Phys Rev B 42:7580–7586

    Article  Google Scholar 

  50. Mckay JM, Henrich VE (1985) Surface electronic structure of NiO: defect states, O2 and H2O interactions. Phys Rev B 32:6764–6772

    Article  Google Scholar 

  51. Wilkinson C, Cheetham AK, Long GJ, Battle PD, Hope DAO (1984) Polarized neutron diffraction and moessbauer effect study of the magnetic ordering in wustite, FeyO. Inorg Chem 23:3136–3141

    Article  Google Scholar 

  52. Goodwin CA, Bowen HK, Kingery WD (1975) Phase separation in the system (Fe, Mn)O. J Am Ceram Soc 58:317–320

    Article  Google Scholar 

  53. Momma K, Izumi F (2008) Vesta: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr 41:653–658

    Article  Google Scholar 

Download references

Acknowledgements

E.A.C. thanks the U.S. Department of Energy, Basic Energy Sciences for funding this project. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). Research leading to these results also received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement number [254227] to M.C.T. M.C.T. also acknowledges the Sara Lee Schupf Award from the Weizmann Institute, the New England Fund stipend from the Technion, and the L’Oréal-Unesco-Israel Award. We thank Andrew Ritzmann from Princeton University for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maytal Caspary Toroker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 203 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Toroker, M.C., Carter, E.A. Strategies to suppress cation vacancies in metal oxide alloys: consequences for solar energy conversion. J Mater Sci 50, 5715–5722 (2015). https://doi.org/10.1007/s10853-015-9113-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9113-y

Keywords

  • Cation Vacancy
  • Iron Metal
  • Valence Band Edge
  • Iron Cation
  • Iron Vacancy