Skip to main content
Log in

Damage resistance in gum metal through cold work-induced microstructural heterogeneity

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cold-worked alloys exhibit high strength, but suffer from limited ductility. In contrast, Ti-based gum metal was reported to exhibit high strength combined with good ductility upon severe pre-straining. Motivated by this anomaly, we systematically studied the evolution of gum metal microstructure during severe cold working (swaging and rolling) and the resulting deformation and damage micro-mechanical mechanisms during follow-up tensile deformation. To this end, various experimental in situ and post-mortem methodologies are employed, including scanning electron microscopy imaging, high-resolution electron backscatter diffraction mapping and transmission electron microscopy. These observations reveal that intense grain refinement takes place through dislocation plasticity-dominated deformation banding upon cold working. The observed enhancement in crack blunting and failure resistance which prolongs the post-necking ductility of gum metal during follow-up tensile straining can be attributed to the deformation-induced development of local heterogeneities in texture and grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. 60 % CS state was selected for these in situ SEM experiments since it provides the most optimum shear band density for further microstructural characterization. In comparison, 30 % CS state has no shear bands, 90 % CS case has too many shear bands.

  2. It is not the result of the artefact of small gauge geometry because (i) the strain was measured using DIC; (ii) the gauge length to thickness ratio (4) was following the ASTM standard; (iii) decreasing the gauge length to 4 mm was reported to have minor influence on the mechanical properties of the material [49].

  3. The increase in strain rate sensitivity may delay the strain localization, transforming localized necking to diffuse necking or causing double necking [39].

  4. Based on the crystallographic symmetry of the bcc lattice, all other 〈110〉-fibre textured lattices either correspond to one of these three states or they are on the way of rotating (around their textured 〈110〉 direction) towards one of them.

References

  1. Saito T, Furuta T, Hwang JH, Kuramoto S, Nishino K, Suzuki N, Chen R, Yamada A, Ito K, Seno Y, Nonaka T, Ikehata H, Nagasako N, Iwamoto C, Ikuhara Y, Sakuma T (2003) Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300(5618):464–467. doi:10.1126/science.1081957

    Article  Google Scholar 

  2. Talling RJ, Dashwood RJ, Jackson M, Dye D (2009) On the mechanism of superelasticity in gum metal. Acta Mater 57(4):1188–1198. doi:10.1016/j.actamat.2008.11.013

    Article  Google Scholar 

  3. Morris JW, Hanlumyuang Y, Sherburne M, Withey E, Chrzan DC, Kuramoto S, Hayashi Y, Hara M (2010) Anomalous transformation-induced deformation in 〈1 1 0〉 textured gum metal. Acta Mater 58(9):3271–3280. doi:10.1016/j.actamat.2010.02.001

    Article  Google Scholar 

  4. Tane M, Akita S, Nakano T, Hagihara K, Umakoshi Y, Niinomi M, Mori H, Nakajima H (2010) Low Young’s modulus of Ti–Nb–Ta–Zr alloys caused by softening in shear moduli c′ and c(44) near lower limit of body-centered cubic phase stability. Acta Mater 58(20):6790–6798. doi:10.1016/j.actamat.2010.09.007

    Article  Google Scholar 

  5. Tane M, Nakano T, Kuramoto S, Hara M, Niinomi M, Takesue N, Yano T, Nakajima H (2011) Low Young’s modulus in Ti–Nb–Ta–Zr–O alloys: cold working and oxygen effects. Acta Mater 59(18):6975–6988. doi:10.1016/j.actamat.2011.07.050

    Article  Google Scholar 

  6. Kuramoto S, Furuta T, Hwang JH, Nishino K, Saito T (2006) Plastic deformation in a multifunctional Ti–Nb–Ta–Zr–O alloy. Metallurg Mater Trans A 37A(3):657–662. doi:10.1007/s11661-006-0037-7

    Article  Google Scholar 

  7. Gutkin MY, Ishizaki T, Kuramoto S, Ovid’ko IA (2006) Nanodisturbances in deformed gum metal. Acta Mater 54(9):2489–2499. doi:10.1016/j.actamat.2006.01

    Article  Google Scholar 

  8. Gutkin MY, Ishizaki T, Kuramoto S, Ovid’ko IA, Skiba NV (2008) Giant faults in deformed gum metal. Int J Plast 24(8):1333–1359. doi:10.1016/j.ijplas.2007.09.009

    Article  Google Scholar 

  9. Guo W, Quadir MZ, Moricca S, Eddows T, Ferry M (2013) Microstructural evolution and final properties of a cold-swaged multifunctional Ti–Nb–Ta–Zr–O alloy produced by a powder metallurgy route. Mater Sci Eng A 575:206–216. doi:10.1016/j.msea.2013.03.029

    Article  Google Scholar 

  10. Tane M, Nakano T, Kuramoto S, Niinomi M, Takesue N, Nakajima H (2013) Omega transformation in cold-worked Ti–Nb–Ta–Zr–O alloys with low body-centered cubic phase stability and its correlation with their elastic properties. Acta Mater 61(1):139–150. doi:10.1016/j.actamat.2012.09.041

    Article  Google Scholar 

  11. Danno A, Wong CC, Tong S, Jarfors A, Nishino K, Furuta T (2010) Effect of cold severe deformation by multi directional forging on elastic modulus of multi functional Ti + 25 mol% (Ta, Nb, V) plus (Zr, Hr, O) alloy. Mater Des 31:S61–S65. doi:10.1016/j.matdes.2009.11.007

    Article  Google Scholar 

  12. Premkumar M, Himabindu VS, Banumathy S, Bhattacharjee A, Singh AK (2012) Effect of mode of deformation by rolling on texture evolution and yield locus anisotropy in a multifunctional beta titanium alloy. Mater Sci Eng A 552:15–23. doi:10.1016/j.msea.2012.04.077

    Article  Google Scholar 

  13. Furuta T, Hara M, Horita Z, Kuramoto S (2009) Severe plastic deformation in gum metal with composition at the structural stability limit. Int J Mater Res 100(9):1217–1221. doi:10.3139/146.110184

    Article  Google Scholar 

  14. Furuta T, Kuramoto S, Hwang J, Nishino K, Saito T (2005) Elastic deformation behavior of multi-functional Ti–Nb–Ta–Zr–O alloys. Mater Trans 46(12):3001–3007. doi:10.2320/matertrans.46.3001

    Article  Google Scholar 

  15. Besse M, Castany P, Gloriant T (2011) Mechanisms of deformation in gum metal TNTZ-O and TNTZ titanium alloys: a comparative study on the oxygen influence. Acta Mater 59(15):5982–5988. doi:10.1016/j.actamat.2011.06.006

    Article  Google Scholar 

  16. Castany P, Besse M, Gloriant T (2011) Dislocation mobility in gum metal beta-titanium alloy studied via in situ transmission electron microscopy. Phys Rev B 84(2):020201. doi:10.1103/PhysRevB.84.020201

    Article  Google Scholar 

  17. Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena. Elsevier, Oxford

    Google Scholar 

  18. Hughes DA, Hansen N (1997) High angle boundaries formed by grain subdivision mechanisms. Acta Mater 45(9):3871–3886. doi:10.1016/s1359-6454(97)00027-x

    Article  Google Scholar 

  19. Wang YM, Chen MW, Sheng HW, Ma E (2002) Nanocrystalline grain structures developed in commercial purity Cu by low-temperature cold rolling. J Mater Res 17(12):3004–3007. doi:10.1557/jmr.2002.0436

    Article  Google Scholar 

  20. Valiev R (2004) Nanostructuring of metals by severe plastic deformation for advanced properties. Nat Mater 3(8):511–516. doi:10.1038/nmat1180

    Article  Google Scholar 

  21. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45(2):103–189. doi:10.1016/s0079-6425(99)00007-9

    Article  Google Scholar 

  22. Yang Y, Wu SQ, Li GP, Li YL, Lu YF, Yang K, Ge P (2010) Evolution of deformation mechanisms of Ti–22.4Nb–0.73Ta–2Zr–1.34O alloy during straining. Acta Mater 58(7):2778–2787. doi:10.1016/j.actamat.2010.01.015

    Article  Google Scholar 

  23. Raabe D, Lücke K (1994) Rolling and annealing textures of BCC metals. In: Bunge HJ (ed) Proceedings of the 10th international conference on textures of materials, Pts 1 and 2—Icotom-10, vol 157., Mater sci forumTranstec Publications Ltd, Zurich-Uetikon, pp 597–610

    Google Scholar 

  24. Raabe D (1995) Simulation of rolling textures of b.c.c. metals considering grain interactions and crystallographic slip on {110}, {112} and {123} planes. Mater Sci Eng, A 197(1):31–37. doi:10.1016/0921-5093(94)09770-4

    Article  Google Scholar 

  25. Sander B, Raabe D (2008) Texture inhomogeneity in a Ti-Nb-based beta-titanium alloy after warm rolling and recrystallization. Mater Sci Eng A 479(1–2):236–247. doi:10.1016/j.msea.2007.06.077

    Article  Google Scholar 

  26. Giannuzzi LA, Stevie FA (eds) (2005) Introduction to focused ion beams: instrumentation, theory, techniques and practice. Springer, New York

    Google Scholar 

  27. Raabe D, Ohsaki S, Hono K (2009) Mechanical alloying and amorphization in Cu–Nb–Ag in situ composite wires studied by transmission electron microscopy and atom probe tomography. Acta Mater 57(17):5254–5263. doi:10.1016/j.actamat.2009.07.028

    Article  Google Scholar 

  28. Zelin M (2002) Microstructure evolution in pearlitic steels during wire drawing. Acta Mater 50(17):4431–4447. doi:10.1016/s1359-6454(02)00281-1

    Article  Google Scholar 

  29. Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater 58(4):1152–1211. doi:10.1016/j.actamat.2009.10.058

    Article  Google Scholar 

  30. Raabe D, Zhao Z, Park SJ, Roters F (2002) Theory of orientation gradients in plastically strained crystals. Acta Mater 50(2):421–440. doi:10.1016/s1359-6454(01)00323-8

    Article  Google Scholar 

  31. Banerjee S, Tewari R, Dey GK (2006) Omega phase transformation—morphologies and mechanisms. Int J Mater Res 97(7):963–977

    Article  Google Scholar 

  32. Yang Y, Li GP, Cheng GM, Li YL, Yang K (2009) Multiple deformation mechanisms of Ti–22.4Nb–0.73Ta–2.0Zr–1.34O alloy. Appl Phys Lett 94(6):3. doi:10.1063/1.3078521

    Google Scholar 

  33. Yano T, Murakami Y, Shindo D, Hayasaka Y, Kuramoto S (2010) Transmission electron microscopy studies on nanometer-sized omega phase produced in gum metal. Scr Mater 63(5):536–539. doi:10.1016/j.scriptamat.2010.05.025

    Article  Google Scholar 

  34. Raabe D, Sander B, Friák M, Ma D, Neugebauer J (2007) Theory-guided bottom-up design of β-titanium alloys as biomaterials based on first principles calculations: theory and experiments. Acta Mater 55(13):4475–4487. doi:10.1016/j.actamat.2007.04.024

    Article  Google Scholar 

  35. Plancher E, Tasan CC, Sandloebes S, Raabe D (2013) On dislocation involvement in Ti–Nb gum metal plasticity. Scr Mater 68(10):805–808. doi:10.1016/j.scriptamat.2013.01.034

    Article  Google Scholar 

  36. Jin M, Minor AM, Stach EA, Morris JW (2004) Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater 52(18):5381–5387. doi:10.1016/j.actamat.2004.07.044

    Article  Google Scholar 

  37. Soer WA, De Hosson JTM, Minor AM, Morris JW, Stach EA (2004) Effects of solute Mg on grain boundary and dislocation dynamics during nanoindentation of Al–Mg thin films. Acta Mater 52(20):5783–5790. doi:10.1016/j.actamat.2004.08.032

    Article  Google Scholar 

  38. Zhang F, Bower AF, Mishra RK, Boyle KP (2009) Numerical simulations of necking during tensile deformation of aluminum single crystals. Int J Plast 25(1):49–69. doi:10.1016/j.ijplas.2007.12.006

    Article  Google Scholar 

  39. Hutchinson JW, Neale KW (1977) Influence of strain-rate sensitivity on necking under uniaxial tension. Acta Metall 25(8):839–846. doi:10.1016/0001-6160(77)90168-7

    Article  Google Scholar 

  40. Joshi VA (2006) Titanium alloys—an atlas of structures and fracture features. Taylor & Francis Group, Boca Raton

    Book  Google Scholar 

  41. Sandim HRZ, Padilha AF, Randle V, Blum W (1999) Grain subdivision and recrystallization in oligocrystalline tantalum during cold swaging and subsequent annealing. Int J Refract Met Hard Mater 17(6):431–435. doi:10.1016/S0263-4368(99)00035-9

    Article  Google Scholar 

  42. Kuhlmann-Wilsdorf D (1999) Overview no. 131—”Regular” deformation bands (DBs) and the LEDS hypothesis. Acta Mater 47(6):1697–1712. doi:10.1016/s1359-6454(98)00413-3

    Article  Google Scholar 

  43. Bay B, Hansen N, Hughes DA, Kuhlmann-Wilsdorf D (1992) Overview no. 96 evolution of f.c.c. deformation structures in polyslip. Acta Metall Mater 40(2):205–219. doi:10.1016/0956-7151(92)90296-Q

    Article  Google Scholar 

  44. Gottstein G (2004) Physical foundations of materials science. Springer, Heidelberg

    Book  Google Scholar 

  45. Jia N, Roters F, Eisenlohr P, Raabe D, Zhao X (2013) Simulation of shear banding in heterophase co-deformation: example of plane strain compressed Cu–Ag and Cu–Nb metal matrix composites. Acta Mater 61(12):4591–4606. doi:10.1016/j.actamat.2013.04.029

    Article  Google Scholar 

  46. Lins JFC, Sandim HRZ, Kestenbach H, Raabe D, Vecchio KS (2007) A microstructural investigation of adiabatic shear bands in an interstitial free steel. Mater Sci Eng A 457(1–2):205–218. doi:10.1016/j.msea.2006.12.019

    Article  Google Scholar 

  47. Hao YL, Zhang ZB, Li SJ, Yang R (2012) Microstructure and mechanical behavior of a Ti–24Nb–4Zr–8Sn alloy processed by warm swaging and warm rolling. Acta Mater 60(5):2169–2177. doi:10.1016/j.actamat.2012.01.003

    Article  Google Scholar 

  48. Lütjering G, Williams JC (2007) Titanium, 2nd edn. Springer, Heidelberg

    Google Scholar 

  49. Zhao YH, Guo YZ, Wei Q, Topping TD, Dangelewicz AM, Zhu YT, Langdon TG, Lavernia EJ (2009) Influence of specimen dimensions and strain measurement methods on tensile stress-strain curves. Mater Sci Eng A 525(1–2):68–77. doi:10.1016/j.msea.2009.06.031

    Article  Google Scholar 

  50. Valiev R (2002) Materials science—nanomaterial advantage. Nature 419(6910):887–889. doi:10.1038/419887a

    Article  Google Scholar 

  51. Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) Paradox of strength and ductility in metals processed by severe plastic deformation. J Mater Res 17(1):5–8. doi:10.1557/jmr.2002.0002

    Article  Google Scholar 

  52. Spielmannová A, Landa M, Machová A, Haušild P, Lejček P (2007) Influence of crack orientation on the ductile–brittle behavior in Fe–3 wt% Si single crystals. Mater Charact 58(10):892–900. doi:10.1016/j.matchar.2006.09.001

    Article  Google Scholar 

  53. Uhnáková A, Machová A, Hora P (2011) 3D atomistic simulation of fatigue behavior of a ductile crack in bcc iron. Int J Fatigue 33(9):1182–1188. doi:10.1016/j.ijfatigue.2011.02.011

    Article  Google Scholar 

  54. Antolovich SD, Armstrong RW (2014) Plastic strain localization in metals: origins and consequences. Prog Mater Sci 59:1–160. doi:10.1016/j.pmatsci.2013.06.001

    Article  Google Scholar 

  55. Bobylev SV, Morozov NF, Ovid’ko IA (2010) Cooperative grain boundary sliding and migration process in nanocrystalline solids. Phys Rev Lett 105(5):4. doi:10.1103/PhysRevLett.105.055504

    Article  Google Scholar 

  56. Li J, Soh AK (2013) Toughening of nanocrystalline materials through shear-coupled migration of grain boundaries. Scr Mater 69(4):283–286. doi:10.1016/j.scriptamat.2013.04.014

    Article  Google Scholar 

  57. Morozov NF, Ovid’ko IA, Sheinerman AG, Aifantis EC (2010) Special rotational deformation as a toughening mechanism in nanocrystalline solids. J Mech Phys Solids 58(8):1088–1099. doi:10.1016/j.jmps.2010.04.003

    Article  Google Scholar 

  58. Liu Y, Zhou J, Shen TD, Hui D (2011) Grain rotation dependent fracture toughness of nanocrystalline materials. Mater Sci Eng A 528(25–26):7684–7687. doi:10.1016/j.msea.2011.06.035

    Article  Google Scholar 

Download references

Acknowledgements

Funding from the European Research Council under the EU’s seventh Framework Program (FP7/2007-2013)/ERC grant agreement 290998 “SmartMet” is also gratefully acknowledged. M. Lai expresses his gratitude to China Scholarship Council for the scholarship granted to support this work. The authors thank Dr. Hauke Springer and Dr. Han Zhang for providing support on material processing and effective discussions.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Tasan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JL., Tasan, C.C., Lai, M.L. et al. Damage resistance in gum metal through cold work-induced microstructural heterogeneity. J Mater Sci 50, 5694–5708 (2015). https://doi.org/10.1007/s10853-015-9105-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9105-y

Keywords

Navigation