Skip to main content
Log in

Bridging atomistic simulations and experiments via virtual diffraction: understanding homophase grain boundary and heterophase interface structures

  • Multiscale Modeling and Experiment
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Virtual diffraction is a computational technique that enables a synergistic coupling between experiments and atomistic simulations, which can help to elucidate nanoscale structure–property relationships. The research objective herein is to highlight recent advances in the use of virtual diffraction as a method to study the geometry and structure of homophase grain boundaries and heterophase interfaces with direct experimental validation. Virtual selected area diffraction patterns for two types of boundaries—homophase Al twist grain boundaries and heterophase Al2O3/Al interfaces—are created without a priori assumption of the periodic interface structure by computing diffraction intensities across high-resolution, 3-D reciprocal space meshes. In this work, computed diffraction patterns clearly identify Al grain boundary misorientation angles, reveal subsidiary peaks created by the dislocation arrays within select Al grain boundaries, and allow experimental validation of the minimum energy orientation relationship for the Al2O3/Al interface. Due to its advanced implementation, virtual diffraction characterization used throughout this work can be easily extended providing routes for similar analysis and experimental validation of atomistic simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hirth JP (1972) The influence of grain boundaries on mechanical properties. Metall Trans 3:3047–3067. doi:10.1007/BF02661312

    Article  Google Scholar 

  2. Derlet PM, Hasnaoui A, Van Swygenhoven H (2003) Atomistic simulations as guidance to experiments. Scr Mater 49:629–635. doi:10.1016/S1359-6462(03)00400-7

    Article  Google Scholar 

  3. Farkas D (2000) Atomistic theory and computer simulation of grain boundary structure and diffusion. J Phys Condens Matter 12:R497–R516. doi:10.1088/0953-8984/12/42/201

    Article  Google Scholar 

  4. Mishin YM, Asta M, Li J (2010) Atomistic modeling of interfaces and their impact on microstructure and properties. Acta Mater 58:1117–1151. doi:10.1016/j.actamat.2009.10.049

    Article  Google Scholar 

  5. Balluffi RW, Sass SL, Schober T (1972) Grain boundary dislocation networks as electron diffraction gratings. Philos Mag 26:585–592. doi:10.1080/14786437208230106

    Article  Google Scholar 

  6. Nyakiti LO, Chaudhuri J, Jankowski AF (2008) High-resolution electron microscopy characterization of nanocrystalline grain boundaries in gold–copper alloys. Thin Solid Films 517:1182–1185. doi:10.1016/j.tsf.2008.06.007

    Article  Google Scholar 

  7. Olmsted DL, Foiles SM, Holm EA (2009) Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater 57:3694–3703. doi:10.1016/j.actamat.2009.04.007

    Article  Google Scholar 

  8. Olmsted DL, Holm EA, Foiles SM (2009) Survey of computed grain boundary properties in face-centered cubic metals—II: grain boundary mobility. Acta Mater 57:3704–3713. doi:10.1016/j.actamat.2009.04.015

    Article  Google Scholar 

  9. Wolf D (1989) Structure-energy correlation for grain boundaries in F.C.C. metals—I. Boundaries on the (111) and (100) planes. Acta Metall 37:1983–1993. doi:10.1016/0001-6160(89)90082-5

    Article  Google Scholar 

  10. Wolf D (1989) Structure-energy correlation for grain boundaries in f.c.c. metals—II. Boundaries on the (110) and (113) planes. Acta Metall 37:2823–2833. doi:10.1016/0001-6160(89)90317-9

    Article  Google Scholar 

  11. Wolf D (1990) Structure-energy correlation for grain boundaries in F.C.C. metals—III. Symmetrical tilt boundaries. Acta Metall Mater 38:781–790. doi:10.1016/0956-7151(90)90030-K

    Article  Google Scholar 

  12. Wolf D (1990) Structure-energy correlation for grain boundaries in f.c.c. metals—IV. Asymmetrical twist (general) boundaries. Acta Metall Mater 38:791–798. doi:10.1016/0956-7151(90)90031-B

    Article  Google Scholar 

  13. Sutton AP (1984) Grain-boundary structure. Int Met Rev 29:377–404. doi:10.1179/imtr.1984.29.1.377

    Article  Google Scholar 

  14. Balluffi RW, Bristowe PD, Babcock SE et al (1985) On comparisons between computed and observed grain boundary structures and properties in metals. Le J Phys Colloq 46:C4-267–C4-280. doi:10.1051/jphyscol:1985430

    Google Scholar 

  15. Balluffi RW, Bristowe PD (1984) On the structural unit/grain boundary dislocation model for grain boundary structure. Surf Sci 144:28–43. doi:10.1016/0039-6028(84)90701-5

    Article  Google Scholar 

  16. Suzuki A, Mishin YM (2005) Atomic mechanisms of grain boundary motion. Mater Sci Forum 502:157–162. doi:10.4028/www.scientific.net/MSF.502.157

    Article  Google Scholar 

  17. Cahn JW, Mishin YM, Suzuki A (2006) Coupling grain boundary motion to shear deformation. Acta Mater 54:4953–4975. doi:10.1016/j.actamat.2006.08.004

    Article  Google Scholar 

  18. Wolf D, Yamakov V, Phillpot SR et al (2005) Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments? Acta Mater 53:1–40. doi:10.1016/j.actamat.2004.08.045

    Article  Google Scholar 

  19. Coleman SP, Spearot DE, Capolungo L (2013) Virtual diffraction analysis of Ni [0 1 0] symmetric tilt grain boundaries. Model Simul Mater Sci Eng 21:055020. doi:10.1088/0965-0393/21/5/055020

    Article  Google Scholar 

  20. Sass SL, Bristowe PD (1980) Diffraction studies of the atomic structure of grain boundaries. Grain–Bound Struct Kinet. American Society for Metals in Metals Park, OH, pp 71–113

    Google Scholar 

  21. Guan DY, Sass SL (1979) X-ray diffraction study of the structure of small-and large-angle [001] tilt boundaries in gold. Philos Mag A 39:293–316. doi:10.1080/01418617908236902

    Article  Google Scholar 

  22. Bristowe PD, Sass SL (1980) The atomic structure of a large angle [001] twist boundary in gold determined by a joint computer modelling and X-ray diffraction study. Acta Metall 28:575–588. doi:10.1016/0001-6160(80)90124-8

    Article  Google Scholar 

  23. Gaudig W, Sass SL (1979) X-ray diffraction study of the structure of large-angle [001] twist grain boundaries in gold. Philos Mag A 39:725–741. doi:10.1080/01418617908239303

    Article  Google Scholar 

  24. Warren BE (1990) X-Ray Diffraction, 1st edn. Dover, New York

    Google Scholar 

  25. Coleman SP, Pamidighantam S, Van Moer M, et al. (2014) Performance improvement and workflow development of virtual diffraction calculations. XSEDE14. doi: 10.1145/2616498.2616552

  26. Coleman SP, Spearot DE (2014) Atomistic simulation and virtual diffraction characterization of stable and metastable alumina surfaces. Acta Mater 78:354–368. doi:10.1016/j.actamat.2014.06.061

    Article  Google Scholar 

  27. Coleman SP, Spearot DE (2015) Atomistic simulation and virtual diffraction characterization of homophase and heterophase alumina interfaces. Acta Mater 82:403–413. doi:10.1016/j.actamat.2014.09.019

    Article  Google Scholar 

  28. Colliex C, Cowley JM, Dudarev SL et al (2004) Electron diffraction. In: Prince E (ed) International tables for crystallography. Volume C mathemetical physical and chemical tables, vol 3. Kluwer Academic Publishers, Norwell, pp 259–429

    Google Scholar 

  29. Peng L-M, Ren G, Dudarev SL, Whelan MJ (1996) Robust parameterization of elastic and absorptive electron atomic scattering factors. Acta Crystallogr Sect A 52:257–276. doi:10.1107/S0108767395014371

    Article  Google Scholar 

  30. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. doi:10.1006/jcph.1995.1039

    Article  Google Scholar 

  31. VisIt. https://wci.llnl.gov/simulation/computer-codes/visit/. Accessed 15 Jan 2015

  32. Mishin YM, Farkas D, Mehl M, Papaconstantopoulos D (1999) Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys Rev B 59:3393–3407. doi:10.1103/PhysRevB.59.3393

    Article  Google Scholar 

  33. Tadmor EB, Elliott RS, Sethna JP et al (2011) The potential of atomistic simulations and the knowledgebase of interatomic models. JOM 63:17. doi:10.1007/s11837-011-0102-6

    Article  Google Scholar 

  34. KIM ID: EAM_Dynamo_Mishin_Farkas_Al__MO_651801486679_001

  35. Spearot DE, Jacob KI, McDowell DL (2005) Nucleation of dislocations from [001] bicrystal interfaces in aluminum. Acta Mater 53:3579–3589. doi:10.1016/j.actamat.2005.04.012

    Article  Google Scholar 

  36. Rittner J, Seidman D (1996) 〈110〉 symmetric tilt grain-boundary structures in fcc metals with low stacking-fault energies. Phys Rev B 54:6999–7015. doi:10.1103/PhysRevB.54.6999

    Article  Google Scholar 

  37. Tschopp MA, McDowell DL (2007) Structures and energies of Σ 3 asymmetric tilt grain boundaries in copper and aluminium. Philos Mag 87:3147–3173. doi:10.1080/14786430701255895

    Article  Google Scholar 

  38. Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58:11085–11088. doi:10.1103/PhysRevB.58.11085

    Article  Google Scholar 

  39. Van Duin ACT, Baas JMA, van de Graaf B (1994) Delft molecular mechanics: a new approach to hydrocarbon force fields. Inclusion of a geometry-dependent charge calculation. J Chem Soc Faraday Trans 90:2881. doi:10.1039/ft9949002881

    Article  Google Scholar 

  40. Sen FG, Qi Y, van Duin ACT, Alpas AT (2013) Oxidation induced softening in Al nanowires. Appl Phys Lett 102:051912. doi:10.1063/1.4790181

    Article  Google Scholar 

  41. Medlin D, McCarty K, Hwang R et al (1997) Orientation relationships in heteroepitaxial aluminum films on sapphire. Thin Solid Films 299:110–114. doi:10.1016/S0040-6090(96)09393-5

    Article  Google Scholar 

  42. Rappe AK, Goddard WA (1991) Charge equilibration for molecular dynamics simulations. J Phys Chem 95:3358–3363. doi:10.1021/j100161a070

    Article  Google Scholar 

  43. Erwin NA, Wang EI, Osysko A, Warner DH (2012) A continuously growing web-based interface structure databank. Model Simul Mater Sci Eng 20:055002. doi:10.1088/0965-0393/20/5/055002

    Article  Google Scholar 

  44. Williams DB, Carter CB (2009) Diffraction in TEM. Transm. Electron Microsc. Part 2 Diffr., 2nd ed. Springer, New York, pp 197–208

  45. Vainshtein BK, Fridkin VM, Indenbom VL (2000) Subgrain boundaries (mosaic structures) in crystals. Modern crystallography, vol 2, 3rd edn. Structure of crystals. Springer, Berlin, pp 367–374

  46. Siegel DJ, Hector LG, Adams JB (2002) Adhesion, atomic structure, and bonding at the Al(111)/α-Al2O3(0001) interface: a first principles study. Phys Rev B 65:085415. doi:10.1103/PhysRevB.65.085415

    Article  Google Scholar 

  47. Lee WE, Lagerlof KPD (1985) Structural and electron diffraction data for sapphire (α-Al2O3). J Electron Microsc Tech 2:247–258. doi:10.1002/jemt.1060020309

    Article  Google Scholar 

Download references

Acknowledgements

SPC acknowledges support by an appointment to Postdoctoral Fellowship at the U.S. Army Research Laboratory, administered by the Oak Ridge Institute for Science and Education. SPC and DES acknowledge support of the National Science Foundation under Grant #0954505. Additional support is provided by the 21st Century Professorship in Mechanical Engineering at the University of Arkansas. Simulations were run using the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant number ACI-1053575.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn P. Coleman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coleman, S.P., Tschopp, M.A., Weinberger, C.R. et al. Bridging atomistic simulations and experiments via virtual diffraction: understanding homophase grain boundary and heterophase interface structures. J Mater Sci 51, 1251–1260 (2016). https://doi.org/10.1007/s10853-015-9087-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9087-9

Keywords

Navigation