Skip to main content
Log in

Environment-benign preparation of Ag toughening TiO2/Ti tight ultrafiltration membrane via aqueous sol–gel route

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new aqueous sol was synthesized to prepare Ag-doped TiO2/Ti composite tight ultrafiltration (UF) membranes. This sol was prepared based on water (>95 wt%), for which the hydrodynamic size of 8 nm could be obtained by tuning the electrostatic and steric repulsive forces, breaking the limit of the polymeric sol–gel method to prepare tight UF membranes. For the preparation of the sol, high water content can significantly reduce the use of organic solvents and is more environment-benign. Moreover, Ag doping can considerably improve the toughness of the supported membranes to efficiently prevent the TiO2/Ti composite membranes from cracking and overcome the thermal expansion mismatch of ceramic membranes and their metallic supports. The prepared Ag-doped TiO2/Ti composite membranes presented a molecular weight cut-off of 3 kDa with a pure water flux of 24 L m−2 h−1 bar−1 and exhibited good dye removal capabilities. The proposed Ag doping method has considerable potential for the fabrication of integrated hybrid ceramic–metallic composite membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shojai F, Mantyla TA (2001) Effect of sintering temperature and holding time on the properties of 3Y-ZrO2 microfiltration membranes. J Mater Sci 36(14):3437–3446. doi:10.1023/A:1017908011672

    Article  Google Scholar 

  2. Ke X, Huang Y, Dargaville TR, Fan Y, Cui Z, Zhu H (2013) Modified alumina nanofiber membranes for protein separation. Sep Purif Technol 120:239–244

    Article  Google Scholar 

  3. Llanos J, Camarillo R, Perez A, Canizares P (2010) Polymer supported ultrafiltration as a technique for selective heavy metal separation and complex formation constants prediction. Sep Purif Technol 73(2):126–134

    Article  Google Scholar 

  4. Li Z, Yang Z, Qiu N, Yang G (2011) A sol-gel-derived alpha-Al2O3 crystal interlayer modified 316L porous stainless steel to support TiO2, SiO2, and TiO2-SiO2 hybrid membranes. J Mater Sci 46(9):3127–3135. doi:10.1007/s10853-010-5193-x

    Article  Google Scholar 

  5. Zhou S, Fan Y, He Y, Xu N (2008) Preparation of titania microfiltration membranes supported on porous Ti-Al alloys. J Membr Sci 325(2):546–552

    Article  Google Scholar 

  6. Van Gestel T, Hauler F, Bram M, Meulenberg WA, Buchkremer HP (2014) Synthesis and characterization of hydrogen-selective sol-gel SiO2 membranes supported on ceramic and stainless steel. supports. Sep Purif Technol 121:20–29

    Article  Google Scholar 

  7. Barredo-Damas S, Isabel Alcaina-Miranda M, Isabel Iborra-Clar M, Antonio Mendoza-Roca J, Gemma M (2011) Effect of pH and MWCO on textile effluents ultrafiltration by tubular ceramic membranes. Desalin Water Treat 27(1–3):81–89

    Article  Google Scholar 

  8. Kang BS, Hyun SH (1999) Gamma-Alumina composite membranes modified with microporous silica for CO2 separation. J Mater Sci 34(6):1391–1398. doi:10.1023/A:1004531022136

    Article  Google Scholar 

  9. Cao XP, Li D, Jing WH, Xing WH, Fan YQ (2012) Synthesis of visible-light responsive C, N and Ce co-doped TiO2 mesoporous membranes via weak alkaline sol-gel process. J Mater Chem 22(30):15309–15315

    Article  Google Scholar 

  10. Van Gestel T, Kruidhof H, Blank DHA, Bouwmeester HJM (2006) ZrO2 and TiO2 membranes for nanofiltration and pervaporation—Part 1. Preparation and characterization of a corrosion-resistant ZrO2 nanofiltration membrane with a MWCO < 300. J Membr Sci 284(1–2):128–136

    Article  Google Scholar 

  11. Van Gestel T, Sebold D, Kruidhof H, Bouwmeester HJM (2008) ZrO2 and TiO2 membranes for nanofiltration and pervaporation—Part 2. Development of ZrO2 and TiO2 toplayers for pervaporation. J Membr Sci 318(1–2):413–421

    Article  Google Scholar 

  12. Tsuru T, Ogawa K, Kanezashi M, Yoshioka T (2010) Permeation characteristics of electrolytes and neutral solutes through titania nanofiltration membranes at high temperatures. Langmuir 26(13):10897–10905

    Article  Google Scholar 

  13. Kreiter R, Rietkerk MDA, Bonekamp BC, van Veen HM, Kessler VG, Vente JF (2008) Sol-gel routes for microporous zirconia and titania membranes. J Sol-Gel Sci Technol 48(1–2):203–211

    Article  Google Scholar 

  14. Warren SC, Perkins MR, Adams AM, Kamperman M, Burns AA, Arora H, Herz E, Suteewong T, Sai H, Li Z, Werner J, Song J, Werner-Zwanziger U, Zwanziger JW, Graetzel M, DiSalvo FJ, Wiesner U (2012) A silica sol-gel design strategy for nanostructured metallic materials. Nat Mater 11(5):460–467

    Article  Google Scholar 

  15. Bischoff BL, Anderson MA (1995) Peptization process in the sol-gel preparation of porous anatase TiO2. Chem Mater 7(10):1772–1778

    Article  Google Scholar 

  16. Yang J, Mei S, Ferreira JMF (2000) Hydrothermal synthesis of nanosized titania powders: influence of peptization and peptizing agents on the crystalline phases and phase transitions. J Am Ceram Soc 83(6):1361–1368

    Article  Google Scholar 

  17. Wei W, Xia S, Liu G, Gu X, Jin W, Xu N (2010) Interfacial adhesion between polymer separation layer and ceramic support for composite membrane. AIChE J 56(6):1584–1592

    Google Scholar 

  18. Liu G, Hoivik N, Wang K, Jakobsen H (2011) A voltage-dependent investigation on detachment process for free-standing crystalline TiO2 nanotube membranes. J Mater Sci 46(24):7931–7935. doi:10.1007/s10853-011-5927-4

    Article  Google Scholar 

  19. Qi H, Fan Y, Xing W, Winnubst L (2010) Effect of TiO2 doping on the characteristics of macroporous Al2O3/TiO2 membrane supports. J Eur Ceram Soc 30(6):1317–1325

    Article  Google Scholar 

  20. Chang Q, Yang Y, Zhang X, Wang Y, J-e Zhou, Wang X, Cerneaux S, Zhu L, Dong Y (2014) Effect of particle size distribution of raw powders on pore size distribution and bending strength of Al2O3 microfiltration membrane supports. J Eur Ceram Soc 34(15):3819–3825

    Article  Google Scholar 

  21. Nagano T, Sato K (2014) Degradation mechanism of an H2-permselective amorphous silica membrane. J Mater Sci 49(11):4115–4120. doi:10.1007/s10853-014-8105-7

    Article  Google Scholar 

  22. Sundarrajan S, Ramakrishna S (2007) Fabrication of nanocomposite membranes from nanofibers and nanoparticles for protection against chemical warfare stimulants. J Mater Sci 42(20):8400–8407. doi:10.1007/s10853-007-1786-4

    Article  Google Scholar 

  23. Bonderer LJ, Studart AR, Gauckler LJ (2008) Bioinspired design and assembly of platelet reinforced polymer films. Science 319(5866):1069–1073

    Article  Google Scholar 

  24. Morita K, Hiraga K, Kim BN (2007) High-strain-rate superplastic flow in tetragonal ZrO2 polycrystal enhanced by the dispersion of 30 vol.% MgAl2O4 spinel particles. Acta Mater 55(13):4517–4526

    Article  Google Scholar 

  25. Li D, Wang H, Jing W, Fan Y, Xing W (2014) Fabrication of mesoporous TiO2 membranes by a nanoparticle-modified polymeric sol process. J Colloid Interface Sci 433:43–48

    Article  Google Scholar 

  26. Cai Y, Chen X, Wang Y, Qiu M, Fan Y (2015) Fabrication of palladium-titania nanofiltration membranes via a colloidal sol-gel process. Microporous Mesoporous Mater 201:202–209

    Article  Google Scholar 

  27. Ritchie RO (2011) The conflicts between strength and toughness. Nat Mater 10(11):817–822

    Article  Google Scholar 

  28. Jang D, Greer JR (2010) Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat Mater 9(3):215–219

    Google Scholar 

  29. Wei W, Xia S, Liu G (2010) Interfacial adhesion between polymer separation layer and ceramic support for composite membrane. AIChE J 56:1584–1592

    Article  Google Scholar 

  30. Yu D-H, Yu X, Wang C, Liu X-C, Xing Y (2012) Synthesis of natural cellulose-templated TiO2/Ag nanosponge composites and photocatalytic properties. ACS Appl Mater Interfaces 4(5):2781–2787

    Article  Google Scholar 

  31. Zhang H, Wang G, Chen D, Lv X, Li J (2008) Tuning photoelectrochemical performances of Ag-TiO2 nanocomposites via reduction/oxidation of Ag. Chem Mater 20(20):6543–6549

    Article  Google Scholar 

  32. Lu L, Sui ML, Lu K (2000) Superplastic extensibility of nanocrystalline copper at room temperature. Science 287(5457):1463–1466

    Article  Google Scholar 

  33. Vinogradov AV, Vinogradov VV (2014) Effect of acidic peptization on formation of highly photoactive TiO2 films prepared without heat treatment. J Am Ceram Soc 97(1):290–294

    Article  Google Scholar 

  34. Chao HE, Yun YU, Xingfang HU, Larbot A (2003) Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder. J Eur Ceram Soc 23(9):1457–1464

    Article  Google Scholar 

  35. Feng N, Wang Q, Zheng A, Zhang Z, Fan J, Liu S-B, Amoureux J-P, Deng F (2013) Understanding the high photocatalytic activity of (B, Ag)-codoped TiO2 under solar-light irradiation with XPS, solid-state NMR, and DFT calculations. J Am Chem Soc 135(4):1607–1616

    Article  Google Scholar 

  36. Oliveri G, Ramis G, Busca G, Escribano VS (1993) Thermal-stability of vanadia-titania catalysts. J Mater Chem 3(12):1239–1249

    Article  Google Scholar 

  37. Qiu M, Fan S, Cai Y, Fan Y, Xu N (2010) Co-sintering synthesis of bi-layer titania ultrafiltration membranes with intermediate layer of sol-coated nanofibers. J Membr Sci 365(1–2):225–231

    Article  Google Scholar 

  38. Alventosa-deLara E, Barredo-Damas S, Alcaina-Miranda MI, Iborra-Clar MI (2012) Ultrafiltration technology with a ceramic membrane for reactive dye removal: optimization of membrane performance. J Hazard Mater 209:492–500

    Article  Google Scholar 

  39. Han R, Zhang S, Xing D, Jian X (2010) Desalination of dye utilizing copoly(phthalazinone biphenyl ether sulfone) ultrafiltration membrane with low molecular weight cut-off. J Membr Sci 358(1–2):1–6

    Article  Google Scholar 

  40. Szekely G, Jimenez-Solomon MF, Marchetti P, Kim JF, Livingston AG (2014) Sustainability assessment of organic solvent nanofiltration: from fabrication to application. Green Chem 16(10):4440–4473

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the High-tech R & D Program of China (863 Program: 2012AA03A606), the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Innovative Research Team Program by the Ministry of Education of China (No. IRT13070).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqun Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Cai, Y., Qiu, M. et al. Environment-benign preparation of Ag toughening TiO2/Ti tight ultrafiltration membrane via aqueous sol–gel route. J Mater Sci 50, 5307–5317 (2015). https://doi.org/10.1007/s10853-015-9078-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9078-x

Keywords

Navigation