Skip to main content
Log in

Preparation of hollow core/shell CeO2@TiO2 with enhanced photocatalytic performance

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, hollow core/shell CeO2@TiO2 photocatalysts were prepared via precipitation-co-hydrothermal method. X-ray diffraction, transmission electron microscopy, UV−Vis diffuse reflectance spectroscopy, thermo-gravimetric–differential thermal analysis, and photoluminescence were used for the characterization of prepared photocatalysts. The synthesis variables were optimized in the photocatalytic removal of rhodamine B (rhB) as a model dye pollutants. The results showed that hollow core/shell CeO2@TiO2 exhibit a significantly enhanced photocatalytic activity in degradation of rhB under either UV or visible light irradiation. The formation of the hollow core/shell CeO2@TiO2 and the photocatalytic mechanisms under UV and visible light were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dong W, Zhu Y, Huang H (2013) A performance study of enhanced visible-light-driven photocatalysis and magnetical protein separation of multifunctional yolk–shell nanostructures. J Mater Chem A1:10030–10036

    Article  Google Scholar 

  2. Akly C, Chadik PA, Mazyck DW (2010) Photocatalysis of gas-phase toluene using silica–titanium composites: performance of a novel catalyst immobilization technique suitable for large-scale applications. Appl Catal B 99:329–335

    Article  Google Scholar 

  3. Zheng RB, Meng XW, Tang FQ (2009) Synthesis characterization and photodegradation study of mixed-phase titanium hollow submicrospheres with rough surface. Appl Surf Sci 255:5989–5994

    Article  Google Scholar 

  4. Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C C13:169–189

    Article  Google Scholar 

  5. Štengl V, Velická J, Maríková M (2011) New generation photocatalysts: how tungsten influences the nanostructure and photocatalytic activity of TiO2 in the UV and visible regions. ACS Appl Mater Interfaces 3:4014–4023

    Article  Google Scholar 

  6. Vu THT, Au HT, Tran LT et al (2014) Synthesis of titanium dioxide nanotubes via one-step dynamic hydrothermal process. J Mater Sci 49:5617–5625. doi:10.1007/s10853-014-8274-4

    Article  Google Scholar 

  7. Moon J, Takagi H, Fujishiro Y (2001) Preparation and characterization of the Sb-doped TiO2 photocatalysts. J Mater Sci 36:949–955. doi:10.1023/A:1004819706292

    Article  Google Scholar 

  8. Yang TS, Yang MC, Shiu CB, Chang WK, Wong MiS (2006) Effect of N2 ion flux on the photocatalysis of nitrogen-doped titanium oxide films by electron-beam evaporation. Appl Surf Sci 252:3729–3736

    Article  Google Scholar 

  9. Zheng YQ, Shi EW, Chen ZZ, Li WJ, Hu XF (2001) Influence of solution concentration on the hydrothermal preparation of titania crystallites. J Mater Chem 11:1547–1551

    Article  Google Scholar 

  10. Liu H, He Y, Liang X (2013) Magnetic photocatalysts containing TiO2 nanocrystals: morphology effect on photocatalytic activity. J Mater Res 29:98–106

    Article  Google Scholar 

  11. Topkaya E, Konyar M, CengizYatmaz H, Öztürk K (2014) Pure ZnO and composite ZnO/TiO2 catalyst plates: a comparative study for the degradation of azo dye, pesticide and antibiotic in aqueous solutions. J Colloid Interface Sci 430:6–11

    Article  Google Scholar 

  12. Bessekhouad Y, Robert D, Weber JV (2005) Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catal Today 101:315–321

    Article  Google Scholar 

  13. Lin CF, Wu CH, Onn ZN (2008) Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 systems. J Hazard Mater 154:1033–1039

    Article  Google Scholar 

  14. Zhou W, Liu K, Fu H (2008) Multi-modal mesoporous TiO2–ZrO2 composites with high photocatalytic activity and hydrophilicity. Nanotechnology 19:035610–035616

    Article  Google Scholar 

  15. Yang H, Zhang K, Shi R (2007) Sol–gel synthesis and photocatalytic activity of CeO2/TiO2 nanocomposites. J Am Ceram Soc 90:1370–1374

    Article  Google Scholar 

  16. Mu J, Chen B, Zhang M (2011) Enhancement of the visible-light photocatalytic activity of In2O3–TiO2 nanofiber heteroarchitectures. ACS Appl Mater Interfaces 4:424–430

    Article  Google Scholar 

  17. Bian Z, Zhu J, Wang S (2008) Self-assembly of active Bi2O3/TiO2 visible photocatalyst with ordered mesoporous structure and highly crystallized anatase. J Phys Chem C 112:6258–6262

    Article  Google Scholar 

  18. Li HB, Li XY, Song YD (2012) CeO2/TiO2 nanotubes composites: synthesis, characterization, and photocatalytic properties. Adv Mater Res 583:86–90

    Article  Google Scholar 

  19. Fang Q, Liang X (2012) CeO2–Al2O3, CeO2–SiO2, CeO2–TiO2, core-shell spheres: formation mechanisms and UV absorption. RSC Adv 2:5370

    Article  Google Scholar 

  20. Ameen S, Akhtar MS, Seo H-K, Shin H-S (2014) Solution-processed CeO2/TiO2 nanocomposite as potent visible light photocatalyst for the degradation of bromophenol dye. Chem Eng J 247:193–198

    Article  Google Scholar 

  21. Ghasemi S, Setayesh SR, Habibi-Yangjeh A (2012) Assembly of CeO2–TiO2 nanoparticles prepared in room temperature ionic liquid on graphene nanosheets for photocatalytic degradation of pollutants. J Hazard Mater 199:170–178

    Article  Google Scholar 

  22. Xie J, Jiang D, Chen M (2010) Preparation and characterization of monodisperse Ce-doped TiO2 microspheres with visible light photocatalytic activity. Colloids Surf A 372:107–114

    Article  Google Scholar 

  23. Eskandarloo H, Badiei A, Behnajady MA (2014) TiO2/CeO2 hybrid photocatalyst with enhanced photocatalytic activity: optimization of synthesis variables. Ind Eng Chem Res 53:7847–7855

    Article  Google Scholar 

  24. Tian J, Sang Y, Zhao Z (2013) Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures. Small 9:3864–3872

    Article  Google Scholar 

  25. Li L, Chu Y, Liu Y (2007) Template-free synthesis and photocatalytic properties of novel Fe2O3 hollow spheres. J Phys Chem C111:2123–2127

    Google Scholar 

  26. Yu J, Yu X (2008) Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. Environ Sci Technol 42:4902–4907

    Article  Google Scholar 

  27. Pan JH, Zhang X, Du AJ (2008) Self-etching reconstruction of hierarchically mesoporous F–TiO2 hollow microspherical photocatalyst for concurrent membrane water purifications. J Am Chem Soc 130:11256–11257

    Article  Google Scholar 

  28. Yu J, Liu W, Yu H (2008) A one-pot approach to hierarchically nanoporous titanium hollow microspheres with high photocatalytic activity. Cryst Growth Des 8:930–934

    Article  Google Scholar 

  29. Bao Y, Yang Y, Shi C (2014) Fabrication of hollow silica spheres and their application in polyacrylate film forming agent. J Mater Sci 49:8215–8225. doi:10.1007/s10853-014-8530-7

    Article  Google Scholar 

  30. Bian Z, Ren J, Zhu J (2009) Self-assembly of BixTi1−xO2 visible photocatalyst with core–shell structure and enhanced activity. Appl Catal B 89:577–582

    Article  Google Scholar 

  31. Liu B, Wang J, Sun S (2013) A general method for the synthesis of various rattle-type microspheres and their diverse applications. RSC Adv 3(40):18506–18518

    Article  Google Scholar 

  32. Fang X, Liu Z, Hsieh MF (2012) Hollow mesoporous aluminosilica spheres with perpendicular pore channels as catalytic nanoreactors. ACS Nano 6:4434–4444

    Article  Google Scholar 

  33. Meng Q, Xiang S, Cheng W (2013) Facile synthesis of manganese oxide loaded hollow silica particles and their application for methylene blue degradation. J Colloid Interface Sci 405:28–34

    Article  Google Scholar 

  34. Wu SH, Tseng CT, Lin YS (2011) Catalytic nano-rattle of Au@ hollow silica: towards a poison-resistant nanocatalyst. J Mater Chem 21:789–794

    Article  Google Scholar 

  35. Sun X, Li Y (2004) Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Ed 43:597–601

    Article  Google Scholar 

  36. Zhang LX, Sun YX, Jiu HF, Fu YH, Wang YZ, Zhang JY (2012) Solvothermal synthesis of hollow Eu2O3 microspheres using carbon template-assisted method. Chem Pap 66:741–747

    Google Scholar 

  37. Sun Y, Zhang L, Zhang J (2014) Synthesis of hollow core-shell ZnCo2O4 spheres and their formation mechanism. Ceram Int 40:1599–1603

    Article  Google Scholar 

  38. Sun X, Li Y (2004) Ga2O3 and GaN semiconductor hollow spheres. Angew Chem Int Ed 43:3827–3831

    Article  Google Scholar 

  39. Lai X, Li J, Korgel BA (2011) General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew Chem Int Ed 50:2738–2741

    Article  Google Scholar 

  40. Harraz FA, Abdel-Salam OE, Mostafa AA (2013) Rapid synthesis of titania–silica nanoparticles photocatalyst by a modified sol–gel method for cyanide degradation and heavy metals removal. J Alloys Compd 551:1–7

    Article  Google Scholar 

  41. Liu H, Wang M, Wang Y (2011) Ionic liquid-templated synthesis of mesoporous CeO2–TiO2 nanoparticles and their enhanced photocatalytic activities under UV or visible light. J Photochem Photobiol A 223:157–164

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from the Shanxi (20110321037-02) the Provincial Science, Technology plan Foundation of China; Shanxi (20100110015-2) the Provincial Science, Technology plan Foundation of China; Shanxi (2012081020) the Provincial International Technological Cooperation of China; and Taiyuan (110240) the Bureau of Science and Technology research projects Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, J., Jiu, H. et al. Preparation of hollow core/shell CeO2@TiO2 with enhanced photocatalytic performance. J Mater Sci 50, 5228–5237 (2015). https://doi.org/10.1007/s10853-015-9070-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9070-5

Keywords

Navigation