Advertisement

Journal of Materials Science

, Volume 50, Issue 15, pp 5183–5190 | Cite as

Bromination of graphene with pentagonal, hexagonal zigzag and armchair, and heptagonal edges

  • Jungpil Kim
  • Yasuhiro YamadaEmail author
  • Ryo Fujita
  • Satoshi Sato
Original Paper

Abstract

The bromination reactivity of azulene, naphthalene, and graphene with pentagonal, hexagonal zigzag and armchair, and heptagonal edges was theoretically estimated by density functional theory calculation and experimentally clarified by analyzing bromination of azulene and naphthalene using gas chromatography–mass spectrometry and ultraviolet–visible spectroscopy. The experimental and theoretical bromination reactivity of azulene with one pentagon and one heptagon was higher than that of naphthalene with two hexagons because of electron-rich carbon atoms on the pentagon. On the other hand, the tendency of theoretical bromination reactivity of pentagonal, hexagonal, and heptagonal edges on graphene was totally opposite to that on azulene and naphthalene. The order of the bromination reactivity of graphene edges was hexagonal zigzag > pentagonal > heptagonal and hexagonal armchair edges. The highest reactivity of hexagonal zigzag edges can be explained by the largest amount of electrons of carbon atoms among all of edges of graphene.

Keywords

Naphthalene Density Functional Theory Calculation Azulene Graphene Edge Zigzag Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by Japan Interaction in Science and Technology Forum.

Supplementary material

10853_2015_9066_MOESM1_ESM.docx (286 kb)
Supplementary material 1 (docx 285 kb)

References

  1. 1.
    Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54:17954–17961CrossRefGoogle Scholar
  2. 2.
    Jia X, Campos-Delgado J, Terrones M, Meunier V, Dresselhaus MS (2011) Graphene edges: a review of their fabrication and characterization. Nanoscale 3:86–95CrossRefGoogle Scholar
  3. 3.
    Xu Z, Zheng QS, Chen G (2007) Elementary building blocks of graphene-nanoribbon-based electronic devices. Appl Phys Lett 90:223115CrossRefGoogle Scholar
  4. 4.
    Boukhvalov DW, Katsnelson MI (2008) Chemical functionalization of graphene with defects. Nano Lett 8:4373–4379CrossRefGoogle Scholar
  5. 5.
    Seitsonen AP, Marco Saitta A, Wassmann T, Lazzeri M, Mauri F (2010) Structure and stability of graphene nanoribbons in oxygen, carbon dioxide, water, and ammonia. Phys Rev B 82:115425CrossRefGoogle Scholar
  6. 6.
    Son YW, Cohen ML, Louie SG (2006) Half-metallic graphene nanoribbons. Nature 444:347–349CrossRefGoogle Scholar
  7. 7.
    Son YW, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97:216803CrossRefGoogle Scholar
  8. 8.
    Koskinen P, Malola S, Häkkinen H (2008) Self-passivating edge reconstructions of graphene. Phys Rev Lett 101:115502CrossRefGoogle Scholar
  9. 9.
    Wassmann T, Seitsonen AP, Marco Saitta A, Lazzeri M, Mauri F (2008) Structure, stability, edge states, and aromaticity of graphene ribbons. Phys Rev Lett 101:096402CrossRefGoogle Scholar
  10. 10.
    Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162CrossRefGoogle Scholar
  11. 11.
    Harris PJF, Liu Z, Suenaga K (2008) Imaging the atomic structure of activated carbon. J Phys 20:362201Google Scholar
  12. 12.
    Pumera M, Scipioni R, Iwai H, Ohno T, Miyahara Y, Boero M (2009) A mechanism of adsorption of b-nicotinamide adenine dinucleotide on graphene sheets: experiment and theory. Chem Eur J 15:10851–10856CrossRefGoogle Scholar
  13. 13.
    Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanal 22:1027–1036CrossRefGoogle Scholar
  14. 14.
    Cervantes-Sodi F, Csányi G, Piscanec S, Ferrari AC (2008) Edge-functionalized and substitutionally doped graphene nanoribbons: electronic and spin properties. Phys Rev B 77:165427CrossRefGoogle Scholar
  15. 15.
    Hod O, Barone V, Peralta JE, Scuseria GE (2007) Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons. Nano Lett 7:2295–2299CrossRefGoogle Scholar
  16. 16.
    Yan Q, Huang B, Yu J, Zheng F, Zang J, Wu J, Gu BL, Liu F, Duan W (2007) Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Lett 7:1469–1473CrossRefGoogle Scholar
  17. 17.
    Jeon IY, Choi HJ, Choi M, Seo JM, Jung SM, Kim MJ, Zhang S, Zhang L, Xia Z, Dai L, Park N, Baek JB (2013) Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Sci Rep 3:1810Google Scholar
  18. 18.
    Jankovský O, Šimek P, Klimová K, Sedmidubský D, Matějková S, Pumera M, Sofer Z (2014) Towards graphene bromide: bromination of graphite oxide. Nanoscale 6:6065–6074CrossRefGoogle Scholar
  19. 19.
    Karlický F, Kumara Ramanatha Datta K, Otyepka M, Zbořil R (2013) Halogenated graphenes: rapidly growing family of graphene derivatives. ACS Nano 7:6434–6464CrossRefGoogle Scholar
  20. 20.
    Jankovský O, Šimek P, Sedmidubský D, Matějková S, Janoušek Z, Šembera F, Pumera M, Sofer Z (2014) Water-soluble highly fluorinated graphite oxide. RSC Adv 4:1378–1387CrossRefGoogle Scholar
  21. 21.
    Šimek P, Klimová K, Sedmidubský D, Jankovský O, Pumera M, Sofer Z (2015) Towards graphene iodide: iodination of graphite oxide. Nanoscale 7:261–270CrossRefGoogle Scholar
  22. 22.
    Poh HL, Šimek P, Sofer Z, Pumera M (2013) Halogenation of graphene with chlorine, bromine, or iodine by exfoliation in a halogen atmosphere. Chem Eur J 19:2655–2662CrossRefGoogle Scholar
  23. 23.
    Gopalakrishnan K, Subrahmanyam KS, Kumar P, Govindaraj A, Rao CNR (2012) Reversible chemical storage of halogens in few-layer graphene. RSC Adv 2:1605–1608CrossRefGoogle Scholar
  24. 24.
    Tan YZ, Yang B, Parvez K, Narita A, Osella S, Beljonne D, Feng X, Müllen K (2013) Atomically precise edge chlorination of nanographenes and its application in graphene nanoribbons. Nat Commun 4:2646Google Scholar
  25. 25.
    Zheng J, Liu HT, Wu B, Di CA, Guo YL, Wu T, Yu G, Liu YQ, Zhu DB (2012) Production of graphite chloride and bromide using microwave sparks. Sci Rep 2:662Google Scholar
  26. 26.
    Sibbel F, Matsui K, Segawa Y, Studer A, Itami K (2014) Selective synthesis of [7]- and [8]cycloparaphenylenes. Chem Commun 50:954–956CrossRefGoogle Scholar
  27. 27.
    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473CrossRefGoogle Scholar
  28. 28.
    Han P, Akagi K, Federici Canova F, Mutoh H, Shiraki S, Iwaya K, Weiss PS, Asao N, Hitosugi T (2014) Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nano 8:9181–9187CrossRefGoogle Scholar
  29. 29.
    Vo TH, Shekhirev M, Kunkel DA, Orange F, Guinel MJF, Enders A, Sinitskii A (2014) Bottom-up solution synthesis of narrow nitrogen-doped graphene nanoribbons. Chem Commun 50:4172–4174CrossRefGoogle Scholar
  30. 30.
    Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision D.01. Wallingford, Gaussian Inc.Google Scholar
  31. 31.
    Kim K, Coh S, Kisielowski C, Crommie MF, Louie SG, Cohen ML, Zettl A (2013) Atomically perfect torn graphene edges and their reversible reconstruction. Nat Commun 4:2723Google Scholar
  32. 32.
    Radovic LR, Suarez A, Vallejos-Burgos F, Sofo JO (2011) Oxygen migration on the graphene surface. 2. Thermochemistry of basal-plane diffusion (hopping). Carbon 49:4226–4238CrossRefGoogle Scholar
  33. 33.
    Mishra PC, Yadav A (2012) Polycyclic aromatic hydrocarbons as finite size models of graphene and graphene nanoribbons: enhanced electron density edge effect. Chem Phys 402:56–68CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jungpil Kim
    • 1
  • Yasuhiro Yamada
    • 1
    Email author
  • Ryo Fujita
    • 1
  • Satoshi Sato
    • 1
  1. 1.Graduate School of EngineeringChiba UniversityChibaJapan

Personalised recommendations