Skip to main content

Advertisement

Log in

Biomaterials for dental implants: current and future trends

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The urge to replace missing teeth dates back to the origin of medicine. Along history, organic materials, metals, alloys, polymers, glasses, and carbon were used to substitute teeth, but only in the past thirty years was a truly scientific approach implemented introducing the concept of osseointegration. This review aims at recapitulating the materials of choice, the surface modifications, and the most updated research advancements in the field of oral osseointegrated implants. As the accepted clinical standard, commercially pure Titanium, Ti–6Al–4V and, to a lesser extent, zirconium dioxide will be described from the perspective of physical, mechanical, and biological features, together with in vitro, in vivo, and clinical assessment of biocompatibility. Outlines of the researches that are presently conducted in an endeavor to limit the drawbacks of the current technology are also provided. Novel Titanium alloys such as Ti–Zr and Ti–20Nb–10Zr–5Ta, Zr61Ti2Cu25Al12, innovative production methods for non metallic materials as well as ceramic composites will be considered as possible promising candidates for future dental implants

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Brånemark PI, Hansson BO, Adell R, Breine U, Lindstrom J, Hallen O et al (1977) Osseointegrated implants in the treatment of edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl 16:1–192

    Google Scholar 

  2. Schroeder A, Stich H, Straumann F, Sutter D (1978) The accumulation of osteocementum around a dental implant under physical loading. SSO Schweiz Monatsschr Zahnheilkd 88(10):1051–1058

    Google Scholar 

  3. Albrektsson T, Eriksson AR, Jacobsson M, Kalebo P, Strid KG, Tjellstrom A (1989) Bone repair in implant models. A review with emphasis on the harvest chamber for bone regeneration studies. Int J Oral Maxillofac Implants 4:45–54

    Google Scholar 

  4. Weinlaender M, Kenney EB, Lekovic V, Beumer J, Moy PK, Lewis S (1992) Histo- morphometry of bone apposition around three types of endosseous dental implants. Int J Oral Maxillofac Implants 7:491–496

    Google Scholar 

  5. Pye AD, Lockhart DEA, Dawson MP, Murray CA, Smith AJ (2009) A review of dental implants and infection. J Hosp Infect 72:104–110

    Google Scholar 

  6. Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23:844–854

    Google Scholar 

  7. Capodiferro S, Favia G, Scivetti M, De Frenza G, Grassi R (2006) Clinical management and microscopic characterisation of fatigue-induced failure of a dental implant. Case report. Head Face Med 22(2):18–22

    Google Scholar 

  8. Bauer S, Schmuki P, von der Mark K, Park J (2013) Engineering biocompatible implant surfaces Part I: materials and surfaces. Prog Mater Sci 58:261–326

    Google Scholar 

  9. Anjard R (1981) Mayan Dental wonders. Oral Implant 9:423–426

    Google Scholar 

  10. Greenfield EJ (1991) Implantation of artificial crown and bridge abutments. Int J Oral Implantol 7:63–68

    Google Scholar 

  11. Strock AE (1939) Experimental work on a method for the replacement of missing teeth by direct implantation of a metal support into the alveolus. Am J Orthod 25:467–472

    Google Scholar 

  12. Marziani L (1954) Dental implants and implant dentures. Their theory, history and practice. Dent Implants 4:459–481

    Google Scholar 

  13. Small IA, Chalmers J (1975) Lyons memorial lecture: metal implants and the mandibular staple bone plate. J Oral Surg 33:571–585

    Google Scholar 

  14. Linkow LI (1970) Endosseous blade-vent implants: a two-year report. J Prosthet Dent 23:441–448

    Google Scholar 

  15. Albreksson T, Wennerberg A (2005) the impact of oral implants-past and future, 1966–2042. J Can Dent Assoc 71:327

    Google Scholar 

  16. Brånemark PI, Breine U, Adell R, Hansson BO, Lindstrom J, Ohlsson A (1969) Intraosseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 3(1):81–100

    Google Scholar 

  17. Brånemark PI (1983) Osseointegration and its experimental background. J Prosthet Dent 50:399–410

    Google Scholar 

  18. Worthington P (2003) Introduction: history of Implants. In: Worthington P, Lang BR, Rubestain JE (eds) Osseointegrating in dentistry: an overview. Quintessence, Illinois p, p 2

    Google Scholar 

  19. Southam JC, Selwyn P (1970) Structural changes around screws used in the treatment of fractured human mandibles. Brit J Oral Surg 8(3):211–221

    Google Scholar 

  20. Hobo S, Ichida E, Garcia CT (1990) Osseointegration and occlusal rehabilitation. Quintessence, Tokyo, pp 3–4

    Google Scholar 

  21. Albrektsson T, Sennerby L (1991) State of the art in oral implants. J Clin Periodontol 18(6):474–481

    Google Scholar 

  22. Schnitman PA, Shulman LB (1980) Dental implants: benefit and risk.An NIH-Harvard consensus development conference. Department of Health and Human Service, Bethesda, pp 1–351

    Google Scholar 

  23. Zarb GA, Smith DC, Levant HC, Graham BS, Staatsexamen WZ (1979) The effects of cemented and uncemented endosseous implants. J Prosthet Dent 42(2):202–210

    Google Scholar 

  24. Zarb GA, Schmitt A (1990) The longitudinal clinical effectiveness of osseointegated dental implants: the Toronto study. Part 1: surgical results. J Prosthet Dent 63(4):451–457

    Google Scholar 

  25. Zarb GA, Schmitt A (1990) The longitudinal clinical effectiveness of osseointegrated dental implants: the Toronto study. Part 2: the prosthetic results. J Prosthet Dent 64(1):53–61

    Google Scholar 

  26. Adell R, Eriksson B, Lekholm U, Brånemark PI, Jemt T (1990) Long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implants 5:347–359

    Google Scholar 

  27. Brånemark PI, Zarb GA, Albrektsson T (1985) Tissue-integrated prostheses: osseointegration in clinical dentistry. Quintessence Publishing Co., Chicago, pp 1–356

    Google Scholar 

  28. Brånemark PI, Engstrand P, Ohrnell LO, Grondahl K, Nilsson P, Hagberg K et al (1999) Brånemark Novum: a new treatment concept for rehabilitation of the edentulous mandible: Preliminary results from a prospective clinical follow-up study. Clin Implant Dent Relat Res 1:2–16

    Google Scholar 

  29. Malò P, Rangert B, Nobre M (2003) “All-on-Four” immediate-function concept with Brånemark System implants for completely edentulous mandibles: a retrospective clinical study. Clin Implant Dent Relat Res 1:2–9

    Google Scholar 

  30. Malò P, Rangert B, Nobre M (2005) All-on-4 immediate–function concept with Brånemark System implants for completely edentulous maxillae: a 1-year retrospective clinical study. Clin Implant Dent Rel Res 7:S88–S94

    Google Scholar 

  31. Duyck J, Van Oosterwyck H, Vander Sloten J, De Cooman M, Puers R, Naert I (2000) Magnitude and distribution of occlusal forces on oral implants supporting fixed prostheses: an in vivo study. Clin Oral Implants Res 11:465–475

    Google Scholar 

  32. Krekmanov L, Kahn M, Rangert B, Lindstrom H (2000) Tilting of posterior mandibular and maxillary implants for improved prosthesis support. Int J Oral Maxillofac Implants 15:405–414

    Google Scholar 

  33. Mozzati M, Arata V, Gallesio G, Mussano F, Carossa S (2012) Immediate postextraction implant placamento with immediate loading for maxillary full-arch rehabilitation: a two-year retrospective analysis. JADA 143:124–133

    Google Scholar 

  34. Mozzati M, Arata V, Gallesio G, Mussano F, Carossa S (2013) Immediate post-extractive dental implant placement with immediate loading on four implants for mandibular-full-arch rehabilitation: a retrospective analysis. Clin Implant Dent Relat Res 15:332–340

    Google Scholar 

  35. Liu X, Chu PK, Ding C (2004) Surface modification of Titanium, Titanium alloys, and related materials for biomedical applications. Mater Sci Eng R 47:49–121

    Google Scholar 

  36. Albrektsson T, Brånemark PI, Hansson HA, Lindström J (1981) Osseointegrated Titanium implants. Requirements for ensuring a long-lasting, direct bone anchorage in man. Acta Orthop Scand 52:155–170

    Google Scholar 

  37. Esposito M, Hirsch JM, Lekholm U, Thomsen P (1998) Biological factors contributing to failures of osseointegrated oral implants. (I). Success criteria and epidemiology. Eur J Oral Sci 106:527–551

    Google Scholar 

  38. Albrektsson T, Zarb G, Worthington P, Eriksson AR (1986) The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants 1:11–25

    Google Scholar 

  39. Albrektsson T, Lekholm U (1989) Osseointegration: current state of the art. Dent Clin North Am 33:537–554

    Google Scholar 

  40. Albrektsson T, Sennerby L (1991) State of the art in oral implants. J Clin Periodontol 18:474–481

    Google Scholar 

  41. Geng JP, Tan KB, Liu GR (2001) Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent 85:585–598

    Google Scholar 

  42. van Staden RC, Guan H, Loo YC, Johnson NW, Meredith N (2008) Stress evaluation of implant wall thickness using numerical techniques. Appl Osseointegr Res 6(1):39–48

    Google Scholar 

  43. Lemons JE (1990) Dental implant biomaterials. J Am Dent Assoc 121:716–719

    Google Scholar 

  44. Wataha JC (1996) Materials for endosseous dental implants. J Oral Rehabil 23:79–90

    Google Scholar 

  45. Williams DF (1981) Implants in dental and maxillofacial surgery. Biomaterials 2:133–146

    Google Scholar 

  46. Ogden HR (1961) In: Clifford AH (ed) Rare metals handbook. Rinhdd Publishing Corporation, Chapman & Hall Ltd, London, pp 559–579

    Google Scholar 

  47. Collings EW (1984) The physical metallurgy of Titanium alloys. In: Gegel HL (ed) ASM Series in Metal Processing. Edward Arnold Publications, Cleveland, Metals Park, OH

    Google Scholar 

  48. Lautenschlager EP, Monaghan P (1993) Titanium and titanium alloys as dental materials. Int Dent J 43:245–253

    Google Scholar 

  49. Geetha M, Singh AK, Muraleedharan K, Gogia AK, Asokamani R (2001) titolo. J Alloys Compd 329:214–223

    Google Scholar 

  50. Tang X, Ahmed T, Rack HJ (2000) Phase transformation in Ti-Nb-Ta and Ti-Nb-Ta-Zr alloys. J Mater Sci 35:1805–1811. doi:10.1023/A:1004792922155.

    Google Scholar 

  51. Polmear IJ (ed) (1981) Titanium alloys. In: Light alloys, chapter 6. Edward Arnold Publications, London

  52. Bania PJ (1993) In: Eylon D, Boyer RR, Koss DA (eds) Titanium alloys in the 1990s. The Mineral Metals & Materials Society, Warrendale, pp 3–14

    Google Scholar 

  53. Schutz RW (1993) In: Eylon D, Boyer RR, Koss DA (eds) Beta titanium alloys in the 1990s. The Mineral, Metals & Materials Society, Warrendale, pp 75–91

  54. Mueller HJ, Greener EH (1970) Polarization studies of surgical materials in Ringer’s solution. J Biomed Mater Res 4:29–41

    Google Scholar 

  55. Rack HJ, Qazi JI (2006) Titanium alloys for biomedical applications. Mater Sci Eng C 26:1269–1277

    Google Scholar 

  56. Geetha M, Singh AK, Gogia AK, Asokamani RJ (2004) Effect of thermomechanical processing on evolution of various phases in Ti-Nb-Zr alloys. Alloys Compd 384:131–151

    Google Scholar 

  57. Nobuhito S, Mitsuo N, Toshikazu A, Junji T, Hiroyuki T (2005) Relationships between tensile deformation behavior and microstructure in Ti–Nb–Ta–Zr system alloys. Mater Sci Eng C25:363–369

    Google Scholar 

  58. Niinomi M, Kuroda D, Fukunaga KI, Morinaga M, Kato Y, Yashiro T, Suzuki A (1999) Corrosion wear fracture of new β type biomedical Titanium alloys. Mater Sci Eng A 263:193–199

    Google Scholar 

  59. Nobuhito S, Mitsuo N, Toshikazu A, Junji T, Hiroyuki T (2005) Effect of Ta content on mechanical properties of Ti–30Nb–XTa–5Zr. Mater Sci Eng C 25:370–376

    Google Scholar 

  60. Qazi J, Marquart B, Allard LF, Rack HJ (2005) Phase transformations in Ti–35Nb–7Zr–5Ta–(0.06–0.68)O alloys. Mater Sci Eng C 25:389–397

    Google Scholar 

  61. Qazi J, Rack HJ (2003) Titanium 2003 science and technology, vol 1. Wiley-VCH Verlag, GMBH and Co. KGaA, Weinhem, p 651

    Google Scholar 

  62. Knob LJ, Olson DL (1987) Metals handbook. Corrosion, vol. 13, 9th edn. ASM International, Material Park

    Google Scholar 

  63. Chiang CY, Chiou SH, Yang WE, Hsu ML, Yung MC, Tsai ML, Chen LK, Huang EH (2009) Formation of TiO2 nano-network on Titanium surface increases the human cell growth. Dent Mater 25:1022–1029

    Google Scholar 

  64. Mu Y, Kobayashi T, Sumita M, Yamamoto A, Hanawa T (2000) Metal ion release from Titanium with active oxygen species generated by rat macrophages in vitro. J Biomed Mater Res 49:283

    Google Scholar 

  65. Browne M, Gregson PJ (2000) Effect of mechanical surface pretreatment on metal ion release. Biomaterials 21:385–392

    Google Scholar 

  66. Cochran DL, Schenk RK, Lussi A, Higginbottom FL, Buser D (1998) Bone response to unloaded and loaded Titanium implants with a sandblasted and acid-etched surface: a histometric study in the canine mandible. J Biomed Mater Res 40:1–11

    Google Scholar 

  67. Wennerberg A, Hallgren C, Johansson C, Danelli S (1998) A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clin Oral Implants Res 9:11–19

    Google Scholar 

  68. Buser D, Schenk R, Steinemann S, Fiorellini J, Fox C, Stich H (1991) Influence of surface characteristics on bone integration of Titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 25:889–902

    Google Scholar 

  69. Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoch M (2000) Dissemination of wear particles to the liver, spleen and abdominal lymph nodes of patients with hip or knee replacement. J Bone Jt Surg Am 82:457–477

    Google Scholar 

  70. Browne M, Gregson PJ (2000) Effect of mechanical surface pretreatment on metal ion release. Biomaterials 21:385–392

    Google Scholar 

  71. Martini D, Fini M, De Pasquale V, Bacchelli B, Gamberini M, Tiniti A et al (2003) Detachment of Titanium and fluorohydroxyapatite particles in unloaded endosseous implants. Biomaterials 24:1309–1316

    Google Scholar 

  72. Xie Y, Zheng X, Huang L, Ding C (2012) Influence of hierarchical hybrid micro/nano-structured surface on biological performance of titanium coating. J Mater Sci 47(3):1411–1417. doi:10.1007/s10853-011-5921-x

    Google Scholar 

  73. Sul YT, Johansson C, Wennerberg A, Cho LR, Chang BS, Albrektsson T (2005) Optimum surface properties of oxidized implants for reinforcement of osseointegration: surface chemistry, oxide thickness, porosity, roughness, and crystal structure. Int J Oral Maxillo Implants 20:349–359

    Google Scholar 

  74. Wennerberg A, Albrektsson T, Albrektsson B, Krol JJ (1996) Histomorphometric and removal torque study of screw-shaped Titanium implants with three different surface topographies. Clin Oral Implant Res 6:24–30

    Google Scholar 

  75. Aparicio C, Gil FJ, Fonseca C, Barbosa M, Planell JA (2003) Corrosion behavior of commercially pure Titanium shot blasted with different materials and size of shot particles for dental implant applications. Biomaterials 24:263–273

    Google Scholar 

  76. Van Drunen J, Zhao B, Jerkiewicz G (2011) Corrosion behavior of surface-modified titanium in a simulated body fluid. J Mater Sci 46(18):5931–5939. doi:10.1007/s10853-011-5548-y

    Google Scholar 

  77. Ivanoff CJ, Hallgren C, Widmark G, Sennerby L, Wennerberg A (2001) Histologic evaluation of the bone integration of TiO2 blasted and turned Titanium microimplants in humans. Clin Oral Implants Res 12:128–134

    Google Scholar 

  78. Gotfredsen K, Wennerberg A, Johansson C, Skovgaard LT, Hjorting-Hansen E (1995) Anchorage of TiO2-blasted, HA-coated, and machined implants: an experimental study with rabbits. J Biomed Mater Res 29:1223–1231

    Google Scholar 

  79. Rasmusson L, Kahnberg KE, Tan A (2001) Effects of implant design and surface on bone regeneration and implant stability: an experimental study in the dog mandible. Clin Implant Dent Relat Res 3:2–8

    Google Scholar 

  80. Gotfredsen K, Karlsson U (2001) A prospective 5-year study of fixed partial prostheses supported by implants with machined and TiO2-blasted surface. J Prosthodont 10:2–7

    Google Scholar 

  81. Rasmusson L, Roos J, Bystedt H (2005) A 10-year follow-up study of Titanium dioxide-blasted implants. Clin Implant Dent Relat Res 7:36–42

    Google Scholar 

  82. van Steenberghe D, De Mars G, Quirynen M, Jacobs R, Naert I (2000) A prospective split-mouth comparative study of two screw-shaped self-tapping pure Titanium implant systems. Clin Oral Implants Res 11:202–209

    Google Scholar 

  83. Astrand P, Engquist B, Dahlgren S, Engquist E, Feldmann H, Grondahl K (1999) Astra Tech and Brånemark System implants: a prospective 5-year comparative study. Results after one year. Clin Implant Dent Relat Res 1:17–26

    Google Scholar 

  84. Abron A, Hopfensperger M, Thompson J, Cooper L (2001) Evaluation of a predictive model for implant surface topography effects on early osseointegration in the rat tibia model. J Prosth Dent 85:40–46

    Google Scholar 

  85. Novaes A, Souza S, de Oliveira P, Souza A (2002) Histomorphometric analysis of the bone-implant contact obtained with 4 different implant surface treatments placed side by side in the dog mandible. Int J Oral Maxillofac Implants 17:377–383

    Google Scholar 

  86. Piatelli M, Scarano A, Paolantonio M, Iezzi G, Petrone G, Piatelli A (2002) Bone response to machined and resorbable blast material Titanium implants: an experimental study in rabbits. J Oral Implantol 28:2–8

    Google Scholar 

  87. Mueller WD, Gross U, Fritz T, Voigt C, Fischer P, Berger G et al (2003) Evaluation of the interface between bone and Titanium surfaces being blasted by aluminium oxide or bioceramic particles. Clin Oral Implants Res 3:349–356

    Google Scholar 

  88. Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y (2007) Surface treatments of Titanium dental implants for rapid osseointegration. Dent Mater 23:844–854

    Google Scholar 

  89. Riedel NA, Williams JD, Popat KC (2011) Ion beam etching titanium for enhanced osteoblast response. J Mater Sci 46(18):6087–6095. doi:10.1007/s10853-011-5571-z

    Google Scholar 

  90. Massaro C, Rotolo F, De Riccardis F, Milella E, Napoli A, Wieland M et al (2002) Comparative investigation of the surface of commercial Titanium dental implants. Part 1: chemical composition. J Mater Sci Mater Med 13:535–548

    Google Scholar 

  91. Zinger O, Anselme K, Denzer A, Habersetzer P, Wieland M, Jeanfils J, Hardouin P, Landolt D (2004) Time-dependent morphology and adhesion of osteoblastic cells on Titanium model surfaces featuring scale-resolved topography. Biomaterials 25:2695–2711

    Google Scholar 

  92. Wong M, Eulenberger J, Schenk R, Hunziker E (1995) Effect of surface topology on the osseointegration of implant materials in trabecular bone. J Biomed Mater Res 29:1567–1575

    Google Scholar 

  93. Park JY, Davies JE (2000) Red blood cell and platelet interactions with Titanium implant surfaces. Clin Oral Implants Res 11:530–539

    Google Scholar 

  94. Trisi P, Lazzara R, Rebaudi A, Rao W, Testori T, Porter SS (2003) Bone-implant contact on machined and dual acid-etched surfaces after 2 months of healing in the human maxilla. J Periodontol 74:945–956

    Google Scholar 

  95. Davies JE (1998) Mechanisms of endosseous integration. Int J Prosthodont 11:391–401

    Google Scholar 

  96. Trisi P, Lazzara R, Rao W, Rebaudi A (2002) Bone-implant contact and bone quality: evaluation of expected and actual bone contact on machined and osseotite implant surfaces. Int J Periodontics Restor Dent 22:535–545

    Google Scholar 

  97. Ellingsen JE (1995) Pre-treatment of Titanium implants with fluoride improves their retention in bone. J Mater Sci Mater Med 6:749–758

    Google Scholar 

  98. Ellingsen JE, Johansson CB, Wennerberg A, Holmen A (2004) Improved retention and bone-to-implant contact with fluoride-modified Titanium implants. Int J Oral Maxillofac Implants 19:659–666

    Google Scholar 

  99. Cooper LF, Zhou Y, Takabe J, Guo J, Abron A, Holmen A, Ellingsen JE (2006) Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. Titanium endosseous implants. Biomaterials 27:926–936

    Google Scholar 

  100. Yokoyama K, Ichikawa T, Murakami H, Miyamoto Y, Asaoka K (2002) Fracture mechanisms of retrieved Titanium screw thread in dental implants. Biomaterials 23:2459–2465

    Google Scholar 

  101. Yokoyama KI, Kaneko K, Ogawa T, Moriyama K, Asaoka K, Sakai JI (2005) Hydrogen embrittlement of work-hardened Ni–Ti alloy in fluoride solutions. Biomaterials 26:101–108

    Google Scholar 

  102. Nagaoka A, Yokoyama KI, Sakai JI (2010) Evaluation of hydrogen absorption behaviour during acid etching for surface modification of commercial pure Ti, Ti–6Al–4V and Ni–Ti superelastic alloys. Corros Sci 52:1130–1138

    Google Scholar 

  103. Lin X, Zhou L, Li S, Lu H, Ding X (2014) Behavior of acid etching on Titanium: topography, hydrophility and hydrogen concentration. Biomed Mater 9:015002

    Google Scholar 

  104. Lamolle SF, Monjo M, Rubert M, Haugen HJ, Lyngstadaas SP, Ellingsen JE (2009) The effect of hydrofluoric acid treatment of Titanium surface on nanostructural and chemical changes and the growth of MC3T3-E1 cells. Biomaterials 30:736–742

    Google Scholar 

  105. Pegueroles M, Gil FJ, Planell JA, Aparicio C (2008) The influence of basting and sterilization on the wettability and surface-energy properties of Titanium surfaces. Surf Coat Technol 202:3470–3479

    Google Scholar 

  106. Pegueroles M, Aparicio C, Bosio M, Engel E, Gil FJ, Planell JA, Altankov GA (2010) Spatial organization of osteoblast Fibronectin-Matrix on Titanium surface—effects of roughness, chemical heterogeneity, and surface free energy. Acta Biomater 6:291–301

    Google Scholar 

  107. Pegueroles M, Aguirre A, Engel E, Pavon G, Gil FJ, Planell JA, Migonney V, Aparicio C (2011) Effect of blasting treatment and Fn coating on MG63 adhesion and differentiation on Titanium. A gene expression study using real-time RT-PCR. J Mater Sci Mater Med 22:617–627

    Google Scholar 

  108. Aparicio C, Manero JM, Conde F, Pegueroles M, Planell JA, Vallet-Regí M, Gil FJ (2007) Acceleration of apatite nucleation on microrough bioactive Titanium for bone-replacing implants. J Biomed Mater Res Part A 82A:521–529

    Google Scholar 

  109. Aparicio C, Rodriguez D, Gil FJ (2011) Variation of roughness and adhesion strength of deposited apatite layers on Titanium dental implants. Mater Sci Eng C 31:320–324

    Google Scholar 

  110. Gil FJ (2002) Growth of bioactive surfaces on Titanium and its alloys for orthopaedic and dental implants. Mater Sci Eng C22:53–60

    Google Scholar 

  111. Buser D, Nydegger T, Oxland T, Cochran DL, Schenk RK, Hirt HP et al (1999) Interface shear strength of Titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs. J Biomed Mater Res 45:75–83

    Google Scholar 

  112. Zhao G, Zinger O, Schwartz Z, Wieland M, Landolt D, Boyan BD (2006) Osteoblast-like cells are sensitive to submicron-scale surface structure. Clin Oral Implants Res 17:258–264

    Google Scholar 

  113. Zinger O, Zhao G, Schwartz Z, Simpson J, Wieland M, Landolt D et al (2005) Differential regulation of osteoblasts by substrate microstructural features. Biomaterials 26:1837–1847

    Google Scholar 

  114. Perrin D, Szmukler-Moncler S, Echikou C, Pointaire P, Bernard JP (2002) Bone response to alteration of surface topography and surface composition of sandblasted and acid etched (SLA) implants. Clin Oral Implants Res 13:465–469

    Google Scholar 

  115. Lausmaa J, Kasemo B, Mattsson H, Odelius H (1990) Multi-technique surface characterization of oxide films on electropolished and anodically oxidized Titanium. Appl Surf Sci 45:189–200

    Google Scholar 

  116. Rupp F, Scheideler L, Olshanska N, de Wild M, Wieland M, Geis-Gerstorfer J (2006) Enhancing surface free energy and hydrophilicity through chemical modification of microstructured implant surfaces. J Biomed Mater Res A 76:323–334

    Google Scholar 

  117. Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, Boyan BD (2005) High surface energy enhances cell response to Titanium substrate microstructure. J Biomed Mater Res A 74:49–58

    Google Scholar 

  118. Qu Z, Rausch-Fan X, Wieland M, Matejka M, Schedle A (2007) The initial attachment and subsequent behavior regulation of osteoblasts by dental implant surface modification. J Biomed Mater Res A 82:658–668

    Google Scholar 

  119. Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, Hoffmann B, Lussi A, Steinemann SG (2004) Enhanced bone apposition to a chemically modified SLA Titanium surface. J Dent Res 83:529–533

    Google Scholar 

  120. Schwarz F, Herten M, Sager M, Wieland M, Dard M, Becker J (2007) Effects of surface hydrophilicity and microtopography on early stages of soft and hard tissue integration at non-submerged titanium implants: an immunohistochemical study in dogs. Clin Oral Implants Res 18:481–488

    Google Scholar 

  121. Schwarz F, Herten M, Sager M, Wieland M, Dard M, Becker J (2007) Bone regeneration in dehiscence-type defects at chemically modified (SLActive®) and conventional SLA Titanium implants: a pilot study in dogs. Clin Periodontol 34:78–86

    Google Scholar 

  122. Ferguson SJ, Broggini N, Wieland M, de Wild M, Rupp F, Geis-Gerstorfer J, Cochran DL, Buser D (2005) Biomechanical evaluation of the interfacial strength of a chemically modified sandblasted and acid-etched Titanium surface. J Biomed Mater Res Part A 10:291–297

    Google Scholar 

  123. Sul YT, Johansson CB, Jeong Y, Roser K, Wennerberg A, Albrektsson T (2001) Oxidized implants and their influence on the bone response. J Mater Sci Mater Med 12:1025–1031

    Google Scholar 

  124. Sul YT, Johansson C, Wennerberg A, Cho LR, Chang BS, Albrektsson T (2005) Optimum surface properties of oxidized implants for reinforcement of osseointegration: surface chemistry, oxide thickness, porosity, roughness, and crystal structure. Int J Oral Maxillofac Implants 20:349–359

    Google Scholar 

  125. Xiropaidis AV, Qahash M, Lim WH, Shanaman RH, Rohrer MD, Wikesjo UM et al (2005) Bone-implant contact at calcium phosphate-coated and porous Titanium oxide (TiUnite)-modified oral implants. Clin Oral Implants Res 16:532–539

    Google Scholar 

  126. Huang YH, Xiropaidis AV, Sorensen RG, Albandar JM, Hall J, Wikesjo UM (2005) Bone formation at Titanium porous oxide (TiUnite) oral implants in type IV bone. Clin Oral Implants Res 16:105–111

    Google Scholar 

  127. Tanaka Y (2005) Titanium-oxide interface structures formed by degassing and anodization process. J Mater Sci 40:3081–3090. doi:10.1007/s10853-005-2668-2

    Google Scholar 

  128. Sul YT, Johansson CB, Roser K, Albrektsson T (2002) Qualitative and quantitative observations of bone tissue reactions to anodised implants. Biomaterials 23:1809–1817

    Google Scholar 

  129. Sul YT, Johansson CB, Jeong Y, Wennerberg A, Albrektsson T (2002) Resonance frequency and removal torque analysis of implants with turned and anodized surface oxides. Clin Oral Implants Res 13:252–259

    Google Scholar 

  130. Rocci A, Martignoni M, Gottlow J (2003) Immediate loading of Brånemark System TiUnite and machined-surface implants in the posterior mandible: a randomized open-ended clinical trial. Clin Implant Dent Relat Res 5:S57–S63

    Google Scholar 

  131. Jungner M, Lundqvist P, Lundgren S (2005) Oxidized Titanium implants (Nobel Biocare TiUnite) compared with turned Titanium implants (Nobel Biocare mark III) with respect to implant failure in a group of consecutive patients treated with early functional loading and two-stage protocol. Clin Oral Implants Res 16:308–312

    Google Scholar 

  132. Schupbach P, Glauser R, Rocci A, Martignoni M, Sennerby L, Lundgren A et al (2005) The human bone-oxidized Titanium implant interface: a light microscopic, scanning electron microscopic, back-scatter scanning electron microscopic, and energy-dispersive X-ray study of clinically retrieved dental implants. Clin Implant Dent Relat Res 7:S36–S43

    Google Scholar 

  133. Elias CN, Oshida Y, Cavalcanti Lima JH, Muller CA (2008) Biomedical applications of titanium and its alloys. J Mech Behav Biomed Mater S1:234–242

    Google Scholar 

  134. Aparicio C, Padrós A, Gil FJ (2011) In vivo evaluation of micro-rough and bioactive Titanium dental implants using histometry and pull-out tests. J Mech Behav Biomed Mater 4:1672–1682

    Google Scholar 

  135. Damen JJ, Ten Cate JM, Ellingsen JE (1991) Induction of calcium phosphate precipitation by Titanium dioxide. J Dent Res 70:1346–1349

    Google Scholar 

  136. Ellingsen JE (1991) A study on the mechanism of protein adsorption to TiO2. Biomaterials 12:593–596

    Google Scholar 

  137. Morris HF, Ochi S, Spray JR, Olson JW (2000) Periodontal-type measurements associated with hydroxyapatite-coated and non-HA-coated implants: uncovering to 36 months. Ann Periodontol 5:56–67

    Google Scholar 

  138. Geurs NC, Jeffcoat RL, McGlumphy EA, Reddy MS, Jeffcoat MK (2002) Influence of implant geometry and surface characteristics on progressive osseointegration. Int J Oral Maxillofac Implants 17:811–815

    Google Scholar 

  139. Giavaresi G, Fini M, Cigada A, Chiesa R, Rondelli G, Rimondini L, Torricelli P, Nicoli Aldini N, Giardino R (2003) Mechanical and histomorphometric evaluations of Titanium implants with different surface treatments inserted in sheep cortical bone. Biomaterials 24:1583–1594

    Google Scholar 

  140. Wheeler S (1996) Eight-year clinical retrospective study of Titanium plasma-sprayed and hydroxyapatite-coated cylinder implants. Int J Oral Maxillofac Implants 11:340–350

    Google Scholar 

  141. Chang YL, Lew D, Park JB, Keller JC (1999) Biomechanical and morphometric analysis of hydroxyapatite-coated implants with varying cristallinity. J Oral Maxillofac Surg 57:1096–1108

    Google Scholar 

  142. Lee J, Rouhfar L, Beirne O (2000) Survival of hydroxypatite-coated implants: a meta-analytic review. J Oral Maxillofac Surg 58:1372–1379

    Google Scholar 

  143. Tinsley D, Watson C, Russell J (2001) A comparison of hydroxyapatite coated implant retained fixed and removable mandibular prostheses over 4 to 6 years. Clin Oral Implants Res 12:159–166

    Google Scholar 

  144. Golec TS, Krauser JT (1992) Long-term retrospective studies on hydroxyapatite-coated endosteal and subperiosteal implants. Dent Clin North Am 36:39–65

    Google Scholar 

  145. Block MS, Kent JN (1992) Prospective review of integral implants. Dent Clin North Am 36:27–37

    Google Scholar 

  146. Yukna RA (1992) Placement of hydroxyapatite-coated implants into fresh or recent extraction sites. Dent Clin North Am 36:97–115

    Google Scholar 

  147. Baltag I, Watanabe K, Kusakari H, Taoyuki N, Miyakawa O, Kobayashi M, Ito N (2000) J Biomed Mater Res Part B. Biomater 53:76–85

    Google Scholar 

  148. Wheeler SL (1996) Eight-year clinical retrospective study of Titanium plasma-sprayed and hydroxyapatite-coated cylinder implants. Int J Oral Maxillofac Implants 11:340–350

    Google Scholar 

  149. Tsui YC, Doyle C, Clyne TW (1998) Plasma sprayed hydroxyapatite coatings on Titanium substrates. Part 1: mechanical properties and residual stress levels. Biomaterials 19:2015

    Google Scholar 

  150. Tsui YC, Doyle C, Clyne TW (1998) Plasma sprayed hydroxyapatite coatings on Titanium substrates. Part 2: optimization of coating properties. Biomaterials 19:2031–2043

    Google Scholar 

  151. Conish H, Aoki H, Sawai K (1981) Science and Medical Applications of Hydroxyapatite Takyama Press Systems Centre Co, Tokyo

  152. Santos JD, Knowles JC, Reis RL, Monteiro FJ, Hastings GW (1994) Microstructural characterization of glass reinforced hydroxyapatite composites. Biomaterials 15:5–10

    Google Scholar 

  153. Santos JD, Lakhan JJ, Monteiro FJ (1995) Surface modifications of glass-reinforced hydroxyapatite composites. Biomaterials 16:521–526

    Google Scholar 

  154. Santos JD, Hastings GW, Knowles JC (1999) Sintered hydroxyapatite compositions and method for the preparation thereof. European. Patent WO 0068164

  155. Lopes M, Knoles J, Santos J, Monteiro F, Olsen I (2000) Direct and indirect effects of P2O5-glass reinforced hydroxyapatite composites and growth and function of osteoblasted-like cells. Biomaterials 21:1165–1172

    Google Scholar 

  156. Lobato JV, Sooraj Hussain N, Botelho CM, Maurıcio AC, Lobato JM, Lopes MA, Afonso A, Ali N, Santos JD (2006) Titanium dental implants coated with Bonelike: clinical case report. Thin Solid Films 515:279–284

    Google Scholar 

  157. Rautray TR, Narayanan R, Kim KH (2011) Ion implantation of Titanium based biomaterials. Prog Mater Sci 56:1137–1177

    Google Scholar 

  158. de Maeztu MA, Alava JI, Gay-Escoda C (2003) Ion implantation: surface treatment for improving the bone integration of Titanium and Ti6Al4V dental implants. Clin Oral Impl Res 14:57–62

    Google Scholar 

  159. Braceras I, Alava JI, Oñate JI, Brizuelaa M, Garcia-Luisa A, Garagorria N, Vivientea JL (2008) Improved osseointegration in ion implantation-treated dental implants. Int J Oral Maxillofac urg 37:441–447

    Google Scholar 

  160. Trejo-Luna R, De La Vega LR, Rickards J, Falcony C, Jergel M (2001) 9 MeV Au ion implantation into Ti and Ti-6Al-4V. J Mater Sci 36(2):503–510. doi:10.1023/A:1004801301495

    Google Scholar 

  161. de Maeztu MA, Braceras I, Alava JI, Gay-Escoda C (2008) Improvement of osseointegration of Titanium dental implant surfaces modified with CO ions: a comparative histomorphometric study in beagle dogs. Int J Oral Maxillofac Surg 37:441–447

    Google Scholar 

  162. Schliephake H, Scharnweber D (2008) Chemical and biological functionalization of Titanium for dental implants. J Mater Chem 18:2404–2414

    Google Scholar 

  163. Anselme K, Bigerelle M, Noel B, Iost A, Hardouin P (2002) Effect of grooved Titanium substratum on human osteoblastic cell growth. J Biomed Mater Res 60:529–540

    Google Scholar 

  164. Bigerelle M, Anselme K, Noel B, Ruderman I, Hardouin P, Iost A (2002) Improvement in the morphology of Ti-based surfaces: a new process to increase in vitro human osteoblast response. Biomaterials 23:1563–1577

    Google Scholar 

  165. Zhu X, Chen J, Scheideler L, Altebaeumer T, Geis-Gerstorfer J, Kern D (2004) Cellular reactions of osteoblasts to micron- and submicron-scale porous structures of Titanium surfaces. Cells Tissues Organs 178:13–22

    Google Scholar 

  166. Zhang W, Wang G, Liu Y, Zhao X, Zou D, Zhu C, Jin Y, Huang Q, Sun J, Liu X, Jiang X, Zreiqat H (2013) The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration. Biomaterials 34(13):3184–3195

    Google Scholar 

  167. Zhang W, Li Z, Huang Q, Xu L, Li J, Jin Y, Wang G, Liu X, Jiang X (2013) Effects of a hybrid micro/nanorod topography-modified titanium implant on adhesion and osteogenic differentiation in rat bone marrow mesenchymal stem cells. Int J Nanomed 8(257–265):14–21

    Google Scholar 

  168. Wang X, Yan W, Hayakawa S, Tsuru K, Osaka A (2003) Apatite deposition on thermally and anodically oxidized Titanium surfaces in a simulated body fluid. Biomaterials 24:4631–4637

    Google Scholar 

  169. Yang B, Uchida M, Kim HM, Zhang X, Kokubo T (2004) Preparation of bioactive Titanium metal via anodic oxidation treatment. Biomaterials 25:1003–1010

    Google Scholar 

  170. Wang J, de Boer J, de Groot K (2004) Preparation and characterization of electrodeposited calcium phosphate/chitosan coating on Ti6Al4V plates. J Dent Res 83:296–301

    Google Scholar 

  171. Shadanbaz S, Dias GJ (2012) Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater 8:20–30

    Google Scholar 

  172. Sena LA, Andrade MC, Rossi AM, Soares GA (2002) Hydroxyapatite deposition by electrophoresis on Titanium sheets with different surface finishing. J Biomed Mater Res 60:1–7

    Google Scholar 

  173. Bose S, Tarafder S (2012) Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater 8:1401–1421

    Google Scholar 

  174. Habibovic P, Barr`ere F, van Blitterswijk CA, de Groot K, Layrolle P (2002) Biomimetic hydroxyapatite coating on metal implants. J Am Ceram Soc 85:517–522

    Google Scholar 

  175. Barrère F, Snel M, Van Blitterswijk C, de Groot K, Layrolle P (2004) Nano-scale study of the nucleation and growth of calcium phosphate coating on Titanium implants. Biomaterials 25:2901–2910

    Google Scholar 

  176. Barrère F, van der Valk CM, Dalmeijer RA, van Blitterswijk CA, de Groot K, Layrolle P (2003) In vitro and in vivo degradation of biomimetic octacalcium phosphate and carbonate apatite coatings on Titanium implants. J Biomed Mater Res 64:378–387

    Google Scholar 

  177. Leeuwenburgh S, Layrolle P, Barrère F, de Bruijn J, Schoonman J, van Blitterswijk CA, de Groot K (2001) Osteoclastic resorption of biomimetic calcium phosphate coatings in vitro. J Biomed Mater Res 56:208–215

    Google Scholar 

  178. Habibovic P, Li J, van der Valk CM, Meijer G, Layrolle P, van Blitterswijk CA, de Groot K (2005) Biological performance of uncoated and octacalcium phosphate-coated Ti6Al4V. Biomaterials 26:23–36

    Google Scholar 

  179. Xie C, Lu H, Li W, Chen FM, Zhao YM (2012) The use of calcium phosphate-based biomaterials in implant dentistry. Mater Sci: Mater Med 23:853–862

    Google Scholar 

  180. Duan K, Wang R (2006) Surface modifications of bone implants through wet chemistry. J Mater Chem 16:2309–2321

    Google Scholar 

  181. Tengvall P, Skoglund B, Askendal A, Aspenberg P (2004) Surface immobilized bisphosphonate improves stainless-steel screw fixation in rats. Biomaterials 25:2133–2138

    Google Scholar 

  182. Wermelin K, Suska F, Tengvall P, Thomsen P, Aspenberg P (2008) Stainless steel screws coated with bisphosphonates gave stronger fixation and more surrounding bone. Histomorphometry in rats. Bone 42:365–371

    Google Scholar 

  183. Wermelin K, Aspenberg P, Linderback P, Tengvall P (2008) Bisphosphonate coating on Titanium screws increases mechanical fixation in rat tibia after 2 weeks. J Biomed Mater Res A 86:220–227

    Google Scholar 

  184. Wermelin K, Tengvall P, Aspenberg P (2007) Surface-bound bisphosphonates enhance screw fixation in rats—increasing effect up to 8 weeks after insertion. Acta Orthop 78:385–392

    Google Scholar 

  185. Fan Y, Duan K, Wang R (2005) A composite coating by electrolysis-induced collagen self-assembly and calcium phosphate mineralization. Biomaterials 26:1623–1632

    Google Scholar 

  186. Abtahi J, Tengvall P, Aspenberg P (2012) A bisphosphonate-coating improves the fixation of metal implants in human bone.A randomized trial of dental implants. Bone 50:1148–1151

    Google Scholar 

  187. Zhang W, Jin Y, Qian S, Li J, Chang Q, Ye D, Pan H, Zhang M, Cao H, Liu X, Jiang X (2014) Vacuum extraction enhances rhPDGF-BB immobilization on nanotubes to improve implant osseointegration in ovariectomized rats, Nanomedicine: nanotechnology. Biol Med 10:1809–1818

    Google Scholar 

  188. Choo T, Marino V, Bartold PM (2013) Effect of PDGF-BB and betatricalcium phosphate (b-TCP) on bone formation around dental implants: a pilot study in sheep. Clin Oral Impl Res 24:158–166

    Google Scholar 

  189. Qiao S, Cao H, Zhao X, Lo H, Zhuang L, Gu Y, Shi J, Liu X, Lai H (2015) Ag-plasma modification enhances bone apposition around titanium dental implants: an animal study in Labrador dogs. Int J Nanomed 10:653–664

    Google Scholar 

  190. Inzunza D, Covarrubias C, Von Marttens A, Leighton Y, Carvajal JC, Valenzuela F, Diaz-Dosque M, Mendez N, Martınez C, Pino AM, Rodriguez JP, Caceres M, Smith P (2014) Synthesis of nanostructured porous silica coatings on titanium and their cell adhesive and osteogenic differentiation properties. J Biomed Mater Res Part 102A:37–48

    Google Scholar 

  191. Memarzadeh K, Sharili AS, Huang J, Rawlinson SCF, Allaker RP (2015) Nanoparticulate zinc oxide as a coating material for orthopedic and dental implants. J Biomed Mater Res Part A 103A:981–989

    Google Scholar 

  192. Li Y, Han C, Zhu X, Wen C, Hodgson P (2012) Osteoblast cell response to nanoscale SiO 2/ZrO 2 particulate-reinforced titanium composites and scaffolds by powder metallurgy. J Mater Sci 47(10):4410–4414. doi:10.1007/s10853-012-6295-4

    Google Scholar 

  193. Roessler S, Born R, Scharnweber D, Worch H, Sewing A, Dard M (2001) Biomimetic coatings functionalized with adhesion peptides for dental implants. J Mater Sci Mater Med 12:871–877

    Google Scholar 

  194. Cheng X, Filiaggi M, Roscoe SG (2004) Electrochemically assisted co-precipitation of protein with calcium phosphate coatings on Titanium alloy. Biomaterials 25:5395–5403

    Google Scholar 

  195. Redepenning J, Venkataraman G, Chen J, Stafford N (2003) Electrochemical preparation of chitosan/hydroxyapatite composite coatings on Titanium substrates. J Biomed Mater Res A 66:411–416

    Google Scholar 

  196. Wang J, de Boer J, de Groot K (2004) Preparation and characterization of electrodeposited calcium phosphate/chitosan coating on Ti6Al4V plates. J Dent Res 83:296–301

    Google Scholar 

  197. Wang J, van Apeldoorn A, de Groot K (2006) Electrolytic deposition of calcium phosphate/chitosan coating on Titanium alloy: growth kinetics and influence of current density, acetic acid, and chitosan. J Biomed Mater Res A 76:503–511

    Google Scholar 

  198. Scharnweber D, Flossel M, Born R, Worch H (2007) Adjusting the chlorhexidine content of calcium phosphate coatings by electrochemically assisted co-deposition from aqueous solutions. J Mater Sci Mater Med 18:391–397

    Google Scholar 

  199. Park J, Bauer S, Schlegel KA, Neukam FW, Mark KV, Schmuki P (2009) TiO2 nanotube surfaces: 15 nm—an optimal length scale of surface topography for cell adhesion and differentiation. Small 5:666–671

    Google Scholar 

  200. McNamara LE, McMurray RJ, Biggs MJP, Kantawong F, Oreffo ROC, Dalby MJ (2010) Nanotopographical control of stem cell differentiation. J Tissue Eng 2010:120623

    Google Scholar 

  201. Puckett S, Pareta R, Webster TJ (2008) Nano rough micron patterned titanium for directing osteoblast morphology and adhesion. Int J Nanomed 3:229–241

    Google Scholar 

  202. Subramanian K, Tran D, Nguyen KT (2012) Cellular responses to nanoscale surface modifications of titanium implants for dentistry and bone tissue engineering applications. In: Subramani K, Ahmed W (eds) Emerging nanotechnologies in dentistry: materials, processes, and applications. Elsevier, Oxford, pp 115–117

    Google Scholar 

  203. Webster TJ, Ejiofor JU (2004) Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25:4731–4739

    Google Scholar 

  204. Cooper LF, Zhou Y, Takebe J, Guo J, Abron A, Holmen A, Ellingsen JE (2006) Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. Titanium endosseous implants, Biomaterials 27:926–936

    Google Scholar 

  205. Ellingsen JE, Thomsen P, Lyngstadaas SP (2006) Advances in dental implant materials and tissue regeneration. Periodontol 2000 41:136–156

    Google Scholar 

  206. Domanski M, Luttge R, Lamers E, Walboomers XF, Winnubst L, Jansen JA, Gardeniers JGE (2012) Submicron-patterning of bulk titanium by nanoimprint lithography and reactive ion etching. Nanotechnology 23:065306

    Google Scholar 

  207. Sul YT, Johansson C, Wennerberg A, Cho LR, Chang BS, Albrektsson T (2005) Optimum surface properties of oxidized implants for reinforcement of osseointegration: surface chemistry, oxide thickness, porosity, roughness, and crystal structure. Int J Oral Maxillofac Implants 20:349–359

    Google Scholar 

  208. Lee SH, Kim HW, Lee EJ, Li LH, Kim HE (2006) Hydroxyapatite–TiO2 hybrid coating on Ti implants. J Biomater Appl 20:195–208

    Google Scholar 

  209. Germanier Y, Tosatti S, Broggini N, Textor M, Buser D (2006) Enhanced bone apposition around biofunctionalized sandblasted and acidetched titanium implant surfaces. A histomorphometric study in miniature pigs. Clin Oral Implants Res 17:251–257

    Google Scholar 

  210. Barrère F, van der Valk CM, Meijer G, Dalmeijer RA, de Groot K, Layrolle P (2003) Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats. J Biomed Mater Res B 67:655–665

    Google Scholar 

  211. Zhang W, Jin Y, Qian S, Li J, Chang Q, Ye D, Pan H, Zhang M, Cao H, Liu X, Jiang X (2014) Vacuum extraction enhances rhPDGF-BB immobilization on nanotubes to improve implant osseointegration in ovariectomized rats. Nanomedicine 10:1809–1818

    Google Scholar 

  212. Bougas K, Jimbo R, Vandeweghe S, Tovar N, Baldassarri M, Alenezi A, Janal M, Coelho PG, Wennerberg A (2014) In vivo evaluation of a novel implant coating agent: laminin-1. Clin Implant Dent Relat Res. 16(5):728–735

    Google Scholar 

  213. Schwartz-Filho HO, Bougas K, Coelho PG, Xue Y, Hayashi M, Faeda RS, Marcantonio RA, Ono D, Kobayashi F, Mustafa K, Wennerberg A, Jimbo R (2012) The effect of laminin-1-doped nanoroughened implant surfaces: gene expression and morphological evaluation. Int J Biomater 2012:305638

    Google Scholar 

  214. Sul YT, Kwon DH, Kang BS, Oh SJ, Johansson C (2013) Experimental evidence for interfacial biochemical bonding in osseointegrated titanium implants. Clin Oral Implants Res 24:8–19

    Google Scholar 

  215. Sul YT, Johansson C, Albrektsson T (2010) A novel in vivo method for quantifying the interfacial biochemical bond strength of bone implants. J R Soc Interface 7(42):81–90

    Google Scholar 

  216. Franke Stenport V, Johansson CB, Sawase T, Yamasaki Y, Oida S (2003) FGF-4 and titanium implants: a pilot study in rabbit bone. Clin Oral Implants Res 14(3):363–368

    Google Scholar 

  217. Jimbo R, Sawase T, Shibata Y, Hirata K, Hishikawa Y, Tanaka Y, Bessho K, Ikeda T, Atsuta M (2007) Enhanced osseointegration by the chemotactic activity of plasma fibronectin for cellular fibronectin positive cells. Biomaterials 28(24):3469–3477

    Google Scholar 

  218. Hanawa T (2010) Biofunctionalization of Titanium for dental implant. Jpn. Dent Sci Rev 46:93–101

    Google Scholar 

  219. Ryu JJ, Park K, Kim HS, Jeong CM, Huh JB (2013) Effects of anodized Titanium with Arg-Gly-Asp (RGD) peptide immobilized via chemical grafting or physical adsorption on bone cell adhesion and differentiation. Int J Oral Maxillofac Implants 28(4):963–972

    Google Scholar 

  220. Kelly J, Lin A, Wang CJ, Park S, Nishimura I (2009) Vitamin D and bone physiology: demonstration of vitamin D deficiency in an implant osseointegration rat model. J Prosthodont 18(6):473–478

    Google Scholar 

  221. Masuyama R, Stockmans I, Torrekens S, Van Looveren R, Maes C, Carmeliet P, Bouillon R, Carmeliet G (2006) Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. J Clin Invest 116(12):3150

    Google Scholar 

  222. Suda T, Takahashi F, Takahashi N (2012) Bone effects of vitamin D—Discrepancies between in vivo and in vitro studies. Arch Biochem Biophys 523(1):22–29

    Google Scholar 

  223. Spagnoli DB, Marx RE (2011) Dental implants and the use of rhBMP-2. Oral Maxillofac Surg Clin North Am 23(2):347–361

    Google Scholar 

  224. Song I, Kim BS, Kim CS, Im GI (2011) Effects of BMP-2 and vitamin D3 on the osteogenic differentiation of adipose stem cells. Biochem Biophys Res Commun 408(1):126–131

    Google Scholar 

  225. Naito TJ, Jimbo R, Bryington, Vandeweghe S, Chrcanovic BR, Tovar N, Ichikawa T, Coelho PG, Wennerber A (2014) The Influence of 1α.25-dihydroxyvitamin D3 coating on implant osseointegration in the rabbit. J Oral Maxillofac Res 5(3):e3 p.8

    Google Scholar 

  226. Lindquist LW, Carlsson GE, Jemt T (1996) A prospective 15-year follow-up study of mandibular fixed prostheses supported by osseointegrated implants. Clinical results and marginal bone loss. Clin Oral Implants Res 7(4):329–336

    Google Scholar 

  227. Andreiotelli M, WEenz HJ, Khoal RJ (2009) Are ceramic implants a viable alternative to Titanium implants? A systematic literature review. Clin Oral Implants Res 20:32–47

    Google Scholar 

  228. Covani U, Barone A, Sbordone L (2004) Bucco-lingual crestal bone changes after immediate and delayed implant placement. J Periodontol 75(12):1605–1612

    Google Scholar 

  229. Cosyn J, Hooghe N, De Bruyn H (2012) A systematic review on the frequency of advanced recession following single immediate implant treatment. J Clin Periodontol 39(6):582–589

    Google Scholar 

  230. Den Hartog L, Huddleston Slater JJR, Vissink A, Meijer HJA, Raghoebar GM (2008) Treatment outcome of immediate, early and conventional single-tooth implants in the aesthetic zone: a systematic review to survival, bone level, soft-tissue, aesthetics and patient satisfaction. J Clin Periodontol 35(12):1073–1086

    Google Scholar 

  231. Schneider D, Grunder U, Ender A, Hämmerle CHF, Jung RE (2011) Volume gain and stability of peri-implant tissue following bone and soft tissue augmentation: 1-year results from a prospective cohort study. Clin Oral Implant Res 22(1):28–37

    Google Scholar 

  232. Esposito M, Maghaireh H, Grusovin MG, Ziounas I, Worthington HV (2012) Interventions for replacing missing teeth: management of soft tissues for dental implants. Cochrane Database Syst Rev. doi:10.1002/14651858.CD006697.pub2

  233. Evrard LWD, Parent D (2010) Allergies to dental metals. Titanium: a new allergen. Rev Med Brux 31(1):44–49

    Google Scholar 

  234. Pigatto PD, Guzzi G, Brambilla L, Sforza C (2009) Titanium allergy associated with dental implant failure. Clin Oral Implant Res 20(8):857

    Google Scholar 

  235. Sicilia A, Cuesta S, Coma G, Arregui I, Guisasola C, Ruiz E et al (2008) Titanium allergy in dental implant patients: a clinical study on 1500 consecutive patients. Clin Oral Implant Res 19(8):823–835

    Google Scholar 

  236. Koutayas SO, Vagkopoulou T, Pelekanos S, Koidis P, Strub JR (2009) Zirconia in dentistry. Part 2. Evidence-based clinical breakthrough. Eur J Esthet Dent 4:348–380

    Google Scholar 

  237. Onodera K, Ooya K, Kawamura H (1993) Titanium lymph node pigmentation in the reconstruction plate system of a mandibular bone defect. Oral Surg Oral Med Oral Pathol 75:495–497

    Google Scholar 

  238. Jacobs JJ, Skipor AK, Patterson LM, Hallab NJ, Paprosky WG, Black J, Galante JO (1998) Metal release in patients who have had a primary total hip arthroplasty.A prospective, controlled, longitudinal study. J Bone Jt Surg Am 80:1447–1458

    Google Scholar 

  239. Wenz HJ, Bartsch J, Wolfart S, Kern M (2008) Osseointegration and clinical success of Zirconia dental implants: a systematic review. Int J Prosthodont 21:27–36

    Google Scholar 

  240. Bågedahl-Strindlund M, Hie M, Furhotf AK, Tomson Y, Larsson KS, Sandborgh-Englund G et al (1997) A multidisciplinary clinical study of patients suffering from illness associated with mercury release from dental restorations: psychiatric aspects. Acta Psychiatr Scand 96(6):475–482

    Google Scholar 

  241. Park YS, Chung SH, Shon WJ (2013) Peri-implant bone formation and surface characteristics of rough surface Zirconia implants manufactured by powder injection molding technique in rabbit tibiae. Clin Oral Impl Res 24:586–591

    Google Scholar 

  242. Juhasz JA, Best SM (1992) Bioactive ceramics: processing, structures and properties. J Mater Sci 47(2):610–624. doi:10.1007/s10853-011-6063-x

    Google Scholar 

  243. Doremus RH (1992) Bioceramics. J Mater Sci 27:285–297. doi:10.1007/BF00543915

    Google Scholar 

  244. Vagkopoulou TKS, Koidis P, Strub JR (2009) Zirconia in dentistry: part 1. Discovering the nature of an upcoming bioceramic. Eur J Esthet Dent 4:130–151

    Google Scholar 

  245. Willmann Die Bedeutung der ISO norm 6474 fur implantate aus Aluminiumoxid. Zahanarziliche Praxis 1990, 41:286–290

  246. Strub JR, Rohner D, Schärer P (1987) Die Versorgung des Lückengebies mit implantatgetragenen Brücken. Eine Longitudinalstudie über 7,5 Jahre. Zeitschrift für Zahnärztliche Implantologie 3:242–254

    Google Scholar 

  247. Fartash B, Arvidson K (1997) Long-term evaluation of single crystal sapphire implants as abutments in fixed prosthodontics. Clin Oral Implant Res 8:58–67

    Google Scholar 

  248. Pigot JL, Dubruillé JH, Dubruillé MT, Mercier JP, Cohen P (1997) Les implants en céramique au secours de la prothèse totale inférieure. Revue de Stomatologie et de Chirurgie maxillofaciale 98:10–13

    Google Scholar 

  249. Dubruillé JH, Viguier E, Le Naour G, Dubruillé MT, Auriol M, Le Charpentier Y (1999) Evaluation of combinations of titanium, zirconia, and alumina implants with 2 bone fillers in the dog. Int J Oral Maxillofac Implants 14:271–277

    Google Scholar 

  250. Lang NP, Pjetursson BE, Tan K, Brägger U, Egger M, Zwahlen M (2004) A systematic review of the survival and complication rates of fixed partial dentures (FPDs) after an observation period of at least 5 years. II. Combined tooth—implant-supported FPDs. Clin Oral Implant Res 15:643–653

    Google Scholar 

  251. Pjetursson BE, Tan K, Lang NP, Brägger U, Egger M, Zwahlen M (2004) A systematic review of the survival and complication rates of fixed partial dentures (FPDs) after an observation period of at least 5 years I. Implant-supported FPDs. Clin Oral Implants Res 15:667–676

    Google Scholar 

  252. Jung RE, Pjetursson BE, Glauser R, Zembic A, Zwahlen M, Land NP (2008) A systematic review of the 5-year survival and complicationrates of implant-supported single crowns. Clin Oral Implant Res 19:119–130

    Google Scholar 

  253. Fartash B, Tangerud T, Silness J, Arvidson K (1996) Rehabilitation of mandibular edentulism by single crystal sapphire implants and overdentures: 3–12 year results in 86 patients. A dual center international study. Clin Oral Implants Res 7:220–229

    Google Scholar 

  254. Piconi C, Maccauro G (1999) Zirconia as a ceramic biomaterial. Biomaterials 20:1–25

    Google Scholar 

  255. Garvie RC, Hannink RH, Pascoe RT (1975) Ceramic steel? Nature 258:703–704

    Google Scholar 

  256. Subbarao EC (1981) Zirconia-an overview. In: Heuer AH, Hobbs LW (eds) Science and technology of Zirconia. The American Ceramic Society, Columbus, pp 1–24

    Google Scholar 

  257. Kisi E, Howard C (1998) Crystal structures of Zirconia phases and their interrelation. Key Eng Mater 153(154):1–35

    Google Scholar 

  258. Garvie RC, Nicholson PS (1972) Phase analysis in Zirconia systems. J Am Ceram Soc 55:303–305

    Google Scholar 

  259. Heuer AH, Lange FF, Swain MV, Evans AG (1986) Transformation toughening: an overview. J Am Ceram Soc 69:i–Iv

    Google Scholar 

  260. Morena R, Lockwood PE, Evans AL, Fairhurst CW (1986) Toughening of dental porcelain by tetragonal ZrO2 addition. J Am Ceram Soc 69:C75

    Google Scholar 

  261. Christel P, Meunier A, Heller M, Torre JP, Peille CN (1989) Mechanical properties and short-term in vivo evaluation of yttrium oxide-partially-stabilized Zirconia. J Biomed Mater Res 23:45–61

    Google Scholar 

  262. Kelly JR, Denry I (2008) Stabilized Zirconia as a structural ceramic: an overview. Dent Mater 24(3):289–298

    Google Scholar 

  263. Piconi C, Burger W, Richter HG, Cittadini A, Maccauro G, Covacci V, Bruzzese N, Ricci GA, Marmo E (1998) Y–TZP ceramics for artificial joint replacements. Biomaterials 19:1489–1494

    Google Scholar 

  264. Chevalier J, Gremillard L, Deville S (2007) Low-Temperature Degradation of Zirconia and Implications for Biomedical Implants. Annu Rev Mater Res 37:1–32

    Google Scholar 

  265. Eichler A (2001) Tetragonal Y-doped Zirconia: structure and ion conductivity. Phys Rev B 64:174103–174108

    Google Scholar 

  266. Fabris S, Paxton AT, Finnis MW (2002) A stabilization mechanism of Zirconia based on oxygen vacancies only. Acta Mater 50:5171–5178

    Google Scholar 

  267. Kosmac T, Oblak C, Jevnikar P, Funduk N, Marion L (1999) The effect of surface grinding and sandblasting on flexural strength and reliability of Y–TZP Zirconia ceramic. Dent Mater 15:426–433

    Google Scholar 

  268. Kelly JR, Denry I (2008) Stabilized Zirconia as a structural ceramic: an overview. Dent Mater 24:289–298

    Google Scholar 

  269. Denry I, Kelly JR (2008) State of the art of Zirconia for dental applications. Dent Mater 24:299–307

    Google Scholar 

  270. Clarke I, Manaka M, Green D, Williams P, Pezzotti G, Kim Y et al (2003) Current status of Zirconia used in total hip implants. J Bone Joint Surg Am 85:73–84

    Google Scholar 

  271. Chevalier J, Gremillard L (2009) Ceramics for medical applications: a picture for the next 20 years. J Eur Ceram Soc 29:1245–1255

    Google Scholar 

  272. Chevalier J (2006) What future for Zirconia as a biomaterial. Biomaterials 27:535–543

    Google Scholar 

  273. Deville S, Guénin G, Chevalier J (2004) Martensitic transformation in Zirconia: part II. Martensite growth. Acta Mater 52:5709–5721

    Google Scholar 

  274. Deville S, Chevalier J (2003) Martensitic relief observation by atomic force microscopy in Yttria-stabilized Zirconia. J Am Ceram Soc 86:2225–2227

    Google Scholar 

  275. Chevalier J, Cales B, Drouin JM (1999) Low-temperature aging of Y–TZP ceramics. J Am Ceram Soc 82:2150–2154

    Google Scholar 

  276. Chevalier J, Gremillard L, Deville S (2007) Low-temperature degradation of Zirconia and implications for biomedical implants. Annu Rev Mater Res 37:1–32

    Google Scholar 

  277. Lawson S (1995) Environmental degradation of Zirconia ceramics. J Eur Ceram Soc 15:485–502

    Google Scholar 

  278. Guo X (1999) On the degradation of Zirconia ceramics during low-temperature annealing in water or water vapor. J Phys Chem Solids 60:539–546

    Google Scholar 

  279. Nakamura M, Inuzuka M, Hashimoto K, Nagai A, Yamashita K (2011) Improving bioactivity and durability of yttria-stabilized zirconia. J Mater Sci 46(22):7335–7343. doi:10.1007/s10853-011-5695-1

    Google Scholar 

  280. Vanni Lughi VS (2010) Low temperature degradation-aging- of Zirconia: a critical review of the relevant aspects in dentistry. Dent Mater 26:807–820

    Google Scholar 

  281. Cattani-Lorente SSSM, Ammann P, Jobin M, Anselm Wiskott HW (2011) Low temperature degradation of a Y–TZP dental ceramic. Acta Biomater 7:858–865

    Google Scholar 

  282. Deville S, Chevalier J, Gremillard L (2006) Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade Zirconia. Biomaterials 27:2186–2192

    Google Scholar 

  283. Shimizu K, Oka M, Kumar P, Kotoura Y, Yamamuro T, Makinouchi K et al (1993) Time-dependent changes in the mechanical properties of Zirconia ceramic. J Biomed Mater Res 27(6):729–734

    Google Scholar 

  284. Fujikawa T (1985) Hot isostatic pressing (HIP) of ceramics and HIP equipment for ceramics. In: Saito S (ed) Fine ceramics. Elsevier, Ohmsha, Ltd. pp 44–53

  285. Richerson DW (1992) Modern ceramic engineering: properties, processing, and use in design. Marcel Dekker, New York

    Google Scholar 

  286. Grant KL, Rawlings RD, Sweeney R (2001) Effect of HIPping, stress and surface finish on the environmental degradation of Y–TZP ceramics. J Mater Sci Mater Med 12:557–564

    Google Scholar 

  287. Blue DS, Griggs JA, Woody RD, Miller BH (2003) Effects of bur abrasive particle size and abutment composition on preparation of ceramic implant abutments. J Prosthet Dent 90:247–254

    Google Scholar 

  288. Yin L, Huang H (2004) Ceramic response to high speed grinding. Mach Sci Technol 8:21–37

    Google Scholar 

  289. Yin L, Jahanmir S, Ives LK (2003) Abrasive machining of porcelain and Zirconia with a dental handpiece. Wear 255:975–989

    Google Scholar 

  290. Strasberg M, Barrett AA, Anusavice KJ, Mecholsky JJ Jr, Nino JC (2014) Influence of roughness on the efficacy of grazing incidence X-ray diffraction to characterize grinding-induced phase changes in yttria-tetragonal zirconia polycrystals (Y–TZP). J Mater Sci 49(4):1630–1638. doi:10.1007/s10853-013-7846-z

    Google Scholar 

  291. Kou W, Molin M, Sjogren G (2006) Surface roughness of five different dental ceramic core materials after grinding and polishing. J Oral Rehab 33:117–124

    Google Scholar 

  292. Sjölin R, Sundh A, Bergman M (1999) The Decim system for the production of dental restorations. Int J Comput Dent 2:197–207

    Google Scholar 

  293. Al-Amleh B, Lyons K, Swain M (2010) Clinical trials in Zirconia: a systematic review. J Oral Rehabil 37:641–652

    Google Scholar 

  294. Grellner F, Hoscheler S, Greil P, Sindel J, Petschelt A (1997) Residual stress measurements of computer aided design/computer aided manufacturing (CAD/CAM) machined dental ceramics. J Mater Sci 32(23):6235–6242. doi:10.1023/A:1018633026519

    Google Scholar 

  295. Josset Y, Oum’Hamed Z, Zarrinpour A, Lorenzato M, Adnet JJ, Laurent-Maquin D (1999) In vitro reactions of human osteoblasts in culture with Zirconia and Alumina ceramics. J Biomed Mater Res 47:481–493

    Google Scholar 

  296. Bächle M, Butz F, Hübner U, Bakalinis E, Kohal RJ (2007) Behavior of CAL72 osteoblast-like cells cultured on Zirconia ceramics with different surface topographies. Clin Oral Implant Res 18:53–59

    Google Scholar 

  297. Kohal RJ, Klaus G, Strub JR (2006) Zirconia-implant-supported all ceramic crowns withstand long-term load: a pilot investigation. Clin Oral Implant Res 17:565–571

    Google Scholar 

  298. Andreiotelli M, Kohal RJ (2009) Fracture strength of Zirconia implants after artificial aging. Clin Implant Dent Related Res 11:158–166

    Google Scholar 

  299. Kohal RJ, Finke HC, Klaus G (2009) Stability of Prototype Two-Piece Zirconia and Titanium Implants after Artificial Aging: an In Vitro Pilot Study. Clin Implant Dent Related Res 11:323–329

    Google Scholar 

  300. Hisbergues M, Vendeville S, Vendeville P (2009) Zirconia: established facts and perspectives for a biomaterial in dental implantology. J Biomed Mater Res B 88B:519–529

    Google Scholar 

  301. Scarano A, Di Carlo F, Quaranta M, Piattelli A (2003) Bone response to Zirconia ceramic implants: an experimental study in rabbits. J Oral Implantol 29:8–12

    Google Scholar 

  302. Sennerby L, Dasmah A, Larsson B, Iverhed M (2005) Bone tissue responses to surface-modified Zirconia implants: a histomorphometric and removal torque study in the rabbit. Clin Implant Dent Related Res 1:13–20

    Google Scholar 

  303. Kohal RJ, Weng D, Bächle M, Strub JR (2004) Loaded custom-made Zirconia and Titanium implants show similar osseointegration: an animal experiment. J Periodontol 75:1262–1268

    Google Scholar 

  304. Akagawa Y, Ichikawa Y, Nikai H, Tsuru H (1993) Interface histology of unloaded and early loaded partially stabilized Zirconia endosseous implant in initial bone healing. J Prosthet Dent 69:599–604

    Google Scholar 

  305. Akagawa Y, Hosokawa R, Sato Y, Kamayama K (1998) Comparison between freestanding and tooth-connected partially stabilized Zirconia implants after two years’ function in monkeys: a clinical and histologic study. J Prosthet Dent 80:551–558

    Google Scholar 

  306. Mellinghoff J (2006) Erste klinische Ergebnisse zu dentalen Schraubenimplantaten aus Zirkonoxid. Zeitschrift für Zahnrztliche Implantologie 22:288–293

    Google Scholar 

  307. Oliva J, Oliva X, Oliva JD (2007) One-year follow-up of first consecutive 100 Zirconia dental implants in humans: a comparison of 2 different rough surfaces. Int J Oral Maxillofac Implants 22:430–435

    Google Scholar 

  308. Lambrich M, Iglhaut G (2008) Vergleich der Uberlebensrate von Zirkondioxid-und Titanimplantaten. Zeitschrift für Zahnärztliche Implantologie 24:182–191

    Google Scholar 

  309. Depprich R, Naujoks C, Ommerborn M, Schwarz F, Kübler NR, Handschel J (2014) Current Findings Regarding Zirconia Implants. Clin Implant Dent Related Res 16:124–137

    Google Scholar 

  310. Payer M, Arnetzl V, Kirmeier R, Koller M, Arnetzl G, Jakse N (2013) Immediate provisional restoration of single-piece Zirconia implants: a prospective case series—results after 24 months of clinical function. Clin Oral Impl Res 24:569–575

    Google Scholar 

  311. Oliva JOX, Oliva JD (2010) Five-year success rate of 831 consecutively placed Zirconia dental implants in humans: a comparison of three different rough surfaces. Int J Oral Maxillofac Implants 25(2):336–344

    Google Scholar 

  312. Kohal RJ, Knauf M, Larsson B, Sahlin H, Butz F (2012) One-piece Zirconia oral implants: one-year results from a prospective cohort study. 1. Single tooth replacement. J Clin Periodontol 39(6):590–597

    Google Scholar 

  313. Aboushelib M, Salem N, Abotaleb A, Abd El Moniem N (2013) Influence of surface nano-roughness on osseointegration of Zirconia implants in rabbit femur heads using selective infiltration etching technique. J Oral Implantol 39(5):583–590

    Google Scholar 

  314. Gahlert M, Gudehus T, Eichhorn S, Steinhauser E, Kniha H, Erhardt W (2007) Biomechanical and histomorphometric comparison between Zirconia implants with varying surface textures and a Titanium implant in the maxilla of miniature pigs. Clin Oral Implant Res 18:662–668

    Google Scholar 

  315. Gahlert M, Rohling S, Wieland M, Sprecher CM, Kniha H, Milz S (2009) Osseointegration of Zirconia and Titanium dental implants: a histological and histomorphometrical study in the maxilla of pigs. Clin Oral Implant Res 20:1247–1253

    Google Scholar 

  316. Wang G, Liu X, Zreiqat H, Ding C (2011) Enhanced effects of nano-scale topography on the bioactivity and osteoblast behaviors of micron rough ZrO2 coatings. Colloids Surf B 86:267–274

    Google Scholar 

  317. Özkurt Z, Kazazoğlu E (2011) Zirconia dental implants: a literature review. J Oral Implantol 37(3):367–376

    Google Scholar 

  318. Cetinel FA, Bauer W, Muller M, Knitter R, Haubelt J (2010) Influence of dispersant, storage time and temperature on the rheological properties of Zirconia–paraffin feedstocks for LPIM. J Eur Ceram Soc 30:1391–1400

    Google Scholar 

  319. Loebbecke B, Knitter R, Haubelt J (2009) Rheological properties of Alumina feedstocks for the low pressure injection moulding process. J Eur Ceram Soc 29:1595–1602

    Google Scholar 

  320. Mohd Foudzi F, Muhamad N, Sulong AB, Zakaria H (2013) Yttria stabilized Zirconia formed by microceramic injection molding: rheological proper ties and debinding effects on the sintered part. Ceram Int 39:2665–2674

    Google Scholar 

  321. Lenk R (1995) Hot moulding—an interesting forming process, cfi. Ber Dtsch Keram Ges 10:636–642

    Google Scholar 

  322. Toy Ç, Palaci Y, Baykara T (1995) A new ceramic thread-guide composition via low-pressure injection molding. J Mater Proc Technol 51:211–222

    Google Scholar 

  323. Soykan HS, Karakas Y (2005) Injection moulding of thin walled Zirconia tubes for oxygen sensors. Adv Appl Ceram 104(6):285–290

    Google Scholar 

  324. Novak S, Dakskobler A, Ribitsch V (2000) The effect of water on the behaviour of Alumina-paraffin suspensions for low pressure injection moulding (LPIM). J Eur Ceram Soc 20:2175–2185

    Google Scholar 

  325. Zhang JG et al (1989) A catalogue of ceramic injection moulding defects and their causes. Ind Ceram 9(2):72–82

    Google Scholar 

  326. Verpoort PJ, Vetter R, Duszczyk J (1996) Overview of powder injection moulding. Adv Perform Mater 3(2):121–151

    Google Scholar 

  327. Mannschatz A, Moritz T (2009) Challenges in two-component ceramic injection moulding. Ceram Forum Int 86(4):E25–E28

    Google Scholar 

  328. German RM, Hens KF (1994) Status of powder injection molding for a variety of materials (including heat and corrosion resistant): i. Ind Heat 5:44–48

    Google Scholar 

  329. German RM, Bose A (1997) Injection molding of metalsand ceramics. Metal powder industries federation. Princeton, New Jersey

    Google Scholar 

  330. Trunec M, Cihlar J (2002) Thermal removal of multicomponent binder from ceramic injection mouldings. J Eur Ceram Soc 22:2231–2241

    Google Scholar 

  331. Krauss VA, Oliveira AAM, Klein AN, Al-Qureshi HA, Fredel MC (2007) A model for PEG removal from Alumina injection moulded parts by solvent debinding. J Mater Process Technol 182:268–273

    Google Scholar 

  332. Loh NH, Tor SB, Khor KA (2001) Production of metal matrix composite part by powder injection molding. J Mater Process Technol 108:398–407

    Google Scholar 

  333. Moritz T, Lenk R (2009) Ceramic injection moulding: are view of developments in production technology, materials and applications. Powder Inject Mould Int 3:23–34

    Google Scholar 

  334. Cheng J, Lei W, Yanbo C, Jinchuan Z, Peng S, Jie D (2010) Fabrication of w–20wt.% cu alloys by powder injection molding. J Mater Process Technol 210:137–142

    Google Scholar 

  335. Thomas-Vielma P, Cervera A, Levenfeld B, Varez A (2008) Production of Alumina parts by powder injection molding with a binder system based on high density polyethylene. J Eur Ceram Soc 28:763–771

    Google Scholar 

  336. Md Ani S, Muchtarn A, Muhamad N, Ghani JA (2014) Binder removal via a two-stage debinding process for ceramic injection molding parts. Ceram Int 40:2819–2824

    Google Scholar 

  337. Liu ZY, Loh NH, Tor SB, Khor KA, Murakoshi Y, Maeda R (2001) Binder system for micropowder injection molding. Mater Lett 48:31–38

    Google Scholar 

  338. Park YS, Chung SH, Shon WJ (2013) Peri-implant bone formation and surface characteristics of rough surface Zirconia implants manufactured by powder injection molding technique in rabbit tibiae. Clin Oral Impl Res 24:586–591

    Google Scholar 

  339. Jum’ah AA, Beekmans BMN, Wood DJ, Maghaireh H (2012) Zirconia implants. The new arrival in the armoury of successful aesthetic implant dentistry. Smile Dent J 7(2):12–26

    Google Scholar 

  340. Barker HW, Liu DM (1995) Inferring optical depth of broken clouds from landsat data. J Clim 8:2620–2630

    Google Scholar 

  341. Chung SH, Kim HK, Shon WJ, Park YS (2013) Peri-implant bone formations around (Ti, Zr)O2-coated Zirconia implants with different surface roughness. J Clin Periodontol 40:404–441

    Google Scholar 

  342. Long M, Rack HJ (1998) Biomaterials 19:1621–1639

    Google Scholar 

  343. Brunette DM, Tengvall P, Textor M, Thomsen P (2001) Titanium in medicine: material science, surface science, engineering, biological responses and medical applications. Springer, Berlin

    Google Scholar 

  344. Eisenbarth E, Velten D, Muller M, Thull R, Breme J (2004) Biocompatibility of beta-stabilizing elements of Titanium alloys. Biomaterials 25:5705–5713

    Google Scholar 

  345. Saldaña L, Méndez-Vilas A, Jiang L, Multigner M, Gonzàlez-Carrasco JL, Pèrez-Prado MT, Gonzàlez-Martìn ML, Munuera L, Vilaboa N (2007) In vitro biocompatibility of an ultrafine grained zirconium. Biomaterials 28:4343–4354

    Google Scholar 

  346. Thomsen P, Larsson C, Ericson LE, Sennerby L, Lausmaa J, Kasemo B (1997) Structure of the interface between rabbit cortical bone and implants of gold, zirconium and Titanium. J Mater Sci Mater Med 8:653–665

    Google Scholar 

  347. Hanawa T (2004) Metal ion release from metal implants. Mater Sci Eng C 24:745–752

    Google Scholar 

  348. Ho WF, Chen WK, Wu SC, Hsu HC (2008) Structure, mechanical properties, and grindability of dental Ti–Zr alloys. J Mater Sci Mater Med 19:3179–3186

    Google Scholar 

  349. Hsu HC, Wu SC, Sung YC, Ho WF (2009) The structure and mechanical properties of as-cast Zr–Ti alloys. J Alloys Compd 488:279–283

    Google Scholar 

  350. Ho WF, Chen WK, Pan CH, Wu SC, Hsu HC (2009) Structure, mechanical properties and grindability of dental Ti–10Zr–X alloys. Mater Sci Eng C 29:36–43

    Google Scholar 

  351. Ho WF, Chen WK, Chen WK, Wu SC, Lin HC, Hsu HC (2009) Mechanical properties and deformation behavior of cast binary Ti-Cr alloys. J Alloys Compd 471:185–189

    Google Scholar 

  352. Zinelis S, Tsetsekou A, Papadopoulos T (2003) Thermal expansion and microstructural analysis of experimental metal-ceramic Titanium alloys. J Prosth Dent 90:332

    Google Scholar 

  353. Correa DRN, Vicente FB, Donato TAG, Arana-Chavez WE, Buzalaf MAR, Grandini CR (2014) The effect of the solute on the structure, selected mechanical properties, and biocompatibility of Ti–Zr system alloys for dental applications. Mater Sci Eng C 34:354–359

    Google Scholar 

  354. Nag S, Banerjee R, Fraser HL (2009) Intra-granular alpha precipitation in Ti-Nb-Zr-Ta biomedical alloys. J Mater Sci 44(3):808–815. doi:10.1007/s10853-008-3148-2

    Google Scholar 

  355. Samuel S, Nag S, Nasrazadani S, Ukirde V, El Bouanani M, Mohandas A, Nguyen K, Banarjee R (2010) Corrosion resistance and in vitro response of laser-deposited Ti–Nb–Zr–Ta alloys for orthopedic implant applications. J Biomed Mater Res 94A:1251–1256

    Google Scholar 

  356. Karthega M, Raman V, Rajendran N (2007) Influence of potential on the electrochemical behaviour of b Titanium alloys in Hank’s solution. Acta Biomater 3(207):1019–1023

    Google Scholar 

  357. Matsuno H, Yokoyama A, Watari F, Uo M, Kawasaki T (2001) Biocompatibility and osteogenesis of refractory metal implants, Titanium, hafnium, niobium, tantalum and rhenium. Biomaterials 22:1253–1262

    Google Scholar 

  358. Payer M, Lorenzoni M, Jakse N, Kirmeier R, Dohr G, Stopper M, Pertl C (2010) Cell growth on different Zirconia and Titanium surface textures: a morpholgic in vitro study. J Dental Implant 4:338–351 (in German)

    Google Scholar 

  359. Rosalbino F, Macciò D, Giannoni P, Quarto R, Saccone A (2011) Study of the in vitro corrosion behavior and biocompatibility of Zr– 2.5Nb and Zr–1.5Nb–1Ta (at%) crystalline alloys. J Mater Sci Mater Med 22:1293–1302

    Google Scholar 

  360. Health-based Reassessment of Administrative Occupational Exposure Limits (2002) Zirconium and zirconium compounds. Health Council of the Netherlands, The Hague

    Google Scholar 

  361. Miloŝev I, Žerjav G, Calderon Moreno JM, Popa M (2013) Electrochemical properties, chemical composition and thickness of passive film formed on novel Ti–20Nb–10Zr–5Ta alloy. Electrochim Acta 99:176–189

    Google Scholar 

  362. Popa M, Vasilescu E, Drob P, Raducanu D, Calderon Moreno JM, Ivanescu S, Vasilescu C, Drob SI (2012) Microstructure, mechanical, and anticorrosive properties of a new Ti–20Nb–10Zr–5Ta alloy based on nontoxic and nonallergenic elements. Met Mater Int 18:639–645

    Google Scholar 

  363. Milošev I, Hmeljak J, Žerjav G, Cör A, Calderon Moreno JM, Popa M (2014) Quaternary Ti–20Nb–10Zr–5Ta alloy during immersion in simulated physiological solutions: formation of layers, dissolution and biocompatibility. J Mater Sci Mater Med 25:1099–1114

    Google Scholar 

  364. Buzzi S, Jin KF, Uggowitzer PJ, Tosatti S, Gerber T, Loffler JF (2006) Cytotoxicity of Zr-based bulk metallic glasses. Intermetallics 14:729–734

    Google Scholar 

  365. Demetriou MD, Wiest A, Hofmann DC, Johnson WL, Han B, Wolfson N, Wang G, Liaw PK (2010) Amorphous metals for hard-tissue prosthesis. JOM 62:83–91

    Google Scholar 

  366. Huang L, Cao Z, Meyer HM, Liaw PK, Garlea E, Dunlap JR, Zhang T, He W (2011) Responses of bone-forming cells on pre-immersed Zr-based bulk metallic glasses: effects of composition and roughness. Acta Biomater 7:395–405

    Google Scholar 

  367. He Q, Cheng YQ, Ma E, Xu J (2011) Location bulk metallic glasses with high fracture toughness: chemical effects and composition optimization. Acta Mater 59:202–215

    Google Scholar 

  368. He Q, Shang JK, Ma E, Xu J (2012) Crack-resistance curve of a Zr–Ti–Cu–Al bulk metallic glass with extraordinary fracture toughness. Acta Mater 60:4940–4949

    Google Scholar 

  369. Li Jing, Shi Ling-ling, Zhu Zhen-dong, He Qiang, Ai Hong-jun, Jian Xu (2013) Zr61Ti2Cu25Al12 metallic glass for potential use in dental implants: biocompatibility assessment by in vitro cellular responses. Mater Sci Eng C 33:2113–2121

    Google Scholar 

  370. Deville S, Chevalier J, Fantozzi G, Bartolome JF, Requena J, Moya JS, Torrecillas R, Dıàz LA (2003) Low-temperature ageing of Zirconia-toughened Alumina ceramics and its implication in biomedical implants. J Eur Ceram Soc 23:2975–2982

    Google Scholar 

  371. Guazzato M, Albakry M, Quach L, Swain MV (2004) Influence of grinding, sandblasting, polishing and heat treatment on the flexural strength of a glass-infiltrated Alumina-reinforced dental ceramic. Biomaterials 25(11):2153–2160

    Google Scholar 

  372. Fabbri P, Piconi C, Burresi E, Magnani G, Mazzanti F, Mingazzini C (2014) Lifetime estimation of a Zirconia-Alumina composite for biomedical applications. Dent Mater 20:138–142

    Google Scholar 

  373. Hallmann L, Ulmer P, Reusser E, Louvel M, Hammerle CHF (2012) Effect of dopants and sintering temperature on microstructure and low temperature degradation of dental Y–TZP–Zirconia. J Eur Ceram Soc 32:4091–4104

    Google Scholar 

  374. Affatato S, Testoni M, Cacciari GL, Toni A (1999) Mixed-oxides prosthetic ceramic ball heads. Part II: effect of the ZrO2 fraction on the wear of ceramic on ceramic joints. Biomaterials 20:1925–1929

    Google Scholar 

  375. De Aza AH, Chevalier J, Fantozzi G, Schehl M, Torrecillas R (2002) Crack growth resistance of Alumina, Zirconia and Zirconia toughened Alumina ceramics for joint prostheses. Biomaterials 23:937–945

    Google Scholar 

  376. Kim DJ, Lee MH, Lee DY, Han JS (2000) Mechanical properties, phase stability, and biocompatibility of (Y, Nb)-TZP/Al2O3 composite abutments for dental implant. J Biomed Mater Res 53:438–443

    Google Scholar 

  377. Moraes MCCS, Elias CN, Duailibi Filho J, Oliveira LG (2004) Mechanical properties of Alumina-Zirconia composites for ceramic abutments. Mater Res 7:643–649

    Google Scholar 

  378. Nevarez-Rascon A, Aguilar-Elguezabal A, Orrantia E, Bocanegra-Bernal MH (2009) On the wide range of mechanical properties of ZTA and ATZ based dental ceramic composites by varying the Al2O3 and ZrO2 content. Int J Refract Met Hard Mater 27:962–970

    Google Scholar 

  379. Nevarez-Rascon A, Aguilar-Elguezabal A, Orrantia E, Bocanegra-Bernal MH (2010) Al2O3(w)–Al2O3(n)–ZrO2 (TZ-3Y)n multi-scale nanocomposite: an alternative for different dental applications. Acta Biomater 6:563–570

    Google Scholar 

  380. Pecharromán C, Bartolomé J, Requena J, Moya J, Deville S, Chevalier J et al (2003) Percolative mechanism of aging in Zirconia-containing ceramics for medical applications. Adv Mater 15:507–511

    Google Scholar 

  381. Kurtz SM, Kocagö S, Arnholt C, Huetc R, Ueno M, Walter WL (2014) Advances in Zirconia toughened Alumina biomaterials for total joint replacement. J Mech Behav Biomed Mater 31:107–116

    Google Scholar 

  382. Magnani G, Brillante A (2005) Effect of the composition and sintering process on mechanical properties and residual stresses in Zirconia-Alumina composites. J Eur Ceram Soc 25:3383–3392

    Google Scholar 

  383. Maccauro G, Bianchino G, Sangiorgi S, Magnani G, Marotta D, Manicone PF et al (2009) Development of a newZirconia-toughened Alumina: promising mechanical properties and absence of in vitro carcinogenicity. Int J Immunopathol Pharmacol 22:773–779

    Google Scholar 

  384. Spinelli MS, Maccauro G, Graci C, Cittadini A, Magnani G, Sangiorgi S et al (2011) Zirconia toughened Alumina (ZTA) powders: ultrastuctural and histological analysis. Int J Immunopathol Pharmacol 24:153–156

    Google Scholar 

  385. Tsukuma K, Shimada M (1985) Thermal stability of Y2O3-partiallystabilized (Y-PSZ) and Y-PSZ/Al2O3composites. J Mater Sci Lett 4:857–861

    Google Scholar 

  386. Tsubakino H, Nozato R, Hamamoto M (1991) Effect of Alumina addition on the tetragonal-to-monocline phase transformation in ziconia–3% mol Yttria. J Am Ceram Soc 74:440–443

    Google Scholar 

  387. Gutknecht D, Chevalier J, Garnier V, Fantozzi G (2007) Key role ofprocessing to avoid low temperature ageing in Alumina Zirconia composites for orthopaedic application. J Eur Ceram Soc 27:1547–1552

    Google Scholar 

  388. Kohal RJ, Wolkewitz M, Mueller C (2010) Alumina reinforced Zirconia implants: survival rate and fracture strength in a masticatory simulation trial. Clin Oral Impl Res 21:1345–1352

    Google Scholar 

  389. Douillard T, Chevalier J, Descamps-Mandine A, Warner I, Galais Y, Whitaker P, Wu JJ, Wang QQ (2012) Comparative ageing behaviour of commercial, unworn and worn 3Y–TZP and Zirconia-toughened Alumina hip joint heads. J Eur Ceram Soc 32:1529–1540

    Google Scholar 

  390. Deville S, Chevalier J, Fantozzi G, Bartolome JF, Requena J, Moya JS et al (2003) Low-temperature ageing of Zirconia-toughened Alumina ceramics and its implication in biomedical implants. J Eur Ceram Soc 23:2975–2982

    Google Scholar 

  391. Vallée A, Faga MG, Mussano F, Catalano F, Tolosano E, Carossa S, Altruda F, Martra G (2014) Alumina-Zirconia composites functionalized with laminin-1 and laminin-5 for dentistry: effect of protein adsorption on cellular response. Colloids Surf B 114:284–293

    Google Scholar 

  392. Md Ani S, Muchtarn A, Muhamad N, Ghani JA (2014) Fabrication of Zirconia-toughened Alumina parts by powder injection molding process: optimized processing parameters. Ceram Int 40:273–280

    Google Scholar 

  393. Özkurt Z, Kazazoğlu E (2010) Clinical success of Zirconia in dental applications. J Prosthodont 37:367–376

    Google Scholar 

  394. Bhat KA, Rajangam P, Dharmalingam S (2012) Fabrication and characterization of polymethylmethacrylate/polysulphone/β-tricalcium phosphate composite for orthopaedic applications. J Mater Sci 47(2):1038–1045. doi:10.1007/s10853-011-5892-y

    Google Scholar 

  395. Liao K (1994) Performance characterization and modeling of a composite hip prosthesis. Exp Tech 18:33–38

    Google Scholar 

  396. Kurtz SM, Devine JN (2007) PEEK biomaterials in trauma, orthopaedic, and spinalimplants. Biomaterials 28:4845–4869

    Google Scholar 

  397. Lethaus B, Ter Laak MP, Laeven P, Beerens M, Koper D, Poukens J et al (2011) A treatment algorithm for patients with large skull bone defects and first results. J Craniomaxillofac Surg 39:435–440

    Google Scholar 

  398. Kurtz SM, Devine Kelsey DJ, Springer GS, Goodman SB (1997) Composite implant for bone replacement. J Compos Mater 31:1593–1632

    Google Scholar 

  399. Hanasono MM, Goel N, De Monte F (2009) Calvarial reconstruction with polyetheretherketone implants. Ann Plast Surg 62:653–655

    Google Scholar 

  400. Koutouzis T, Richardson J, Lundgren T (2007) Comparative soft and hard tissue responses to Titanium and polymer healing abutments. J Oral Implantol 37:174–182

    Google Scholar 

  401. Tetelman ED, Babbush CA (2008) A new transitional abutment for immediate aesthetics and function. Implant Dent 17:51–58

    Google Scholar 

  402. Bayer S, Komor N, Kramer A, Albrecht D, Mericske-Stern R, Enkling N (2012) Retention force of plastic clips on implant bars: a randomized controlled trial. Clin Oral Implants Res 23:1377–1384

    Google Scholar 

  403. Schwitalla A, Muller WD (2013) PEEK dental implants: a review of the literature. J Oral Implant 39(6):743–749

    Google Scholar 

  404. Khonsari RH, Berthier P, Rouillon T, Perrin JP, Corre P (2014) Severe infectious complications after PEEK-derived implant placement: report of three cases. J Oral Maxillofac Surg Med Pathol 26(4):477–482

    Google Scholar 

  405. Han Cheol-Min, Lee Eun-Jung, Kim Hyoun-Ee, Koh Young-Hag, Kim Keung N, Ha Yoon, Kuh Sung-Uk (2010) The electron beam deposition of Titanium on polyetheretherketone (PEEK) and the resulting enhanced biological properties. Biomaterials 31:3465–3470

    Google Scholar 

  406. Cook SD, Rust-Dawicki AM (1995) Preliminary evaluation of Titanium-coated PEEK dental implants. J Oral Implantol 21:176–181

    Google Scholar 

  407. Koch FP, Weng D, Krämer S, Biesterfeld S, Jahn-Eimermacher A, Wagner W (2010) Osseointegration of one-piece Zirconia implants compared with a Titanium implant of identical design: a histomorphometric study in the dog. Clin Oral Implants Res 21:350–356

    Google Scholar 

  408. Sarot JR, Contar CM, Cruz AC, de Souza Magini R (2010) Evaluation of the stress distribution in CFR-PEEK dental implants by the three-dimensional finite element method. J Mater Sci Mater Med 21:2079–2085

    Google Scholar 

  409. Lee WT, Koak JY, Lim YJ, Kim SK, Kwon HB, Kim MJ (2012) Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants. J Biomed Mater Res B 100:1044–1052

    Google Scholar 

  410. Nakahara I, Takao M, Goto T, Ohtsuki C, Hibino S, Sugano N (2012) Interfacial shearstrength of bioactive-coated carbon fiber reinforced polyetheretherketone after in vivo implantation. J Orthop Res 30:1618–1625

    Google Scholar 

  411. Zhao M, An M, Wang Q, Liu X, Lai W, Zhao X, Wei S, Ji J (2012) Quantitative proteomic analysis of human osteoblast-like MG-63 cells in response to bioinert implant material Titanium and polyetheretherketone. J Proteomics 75:3560–3573

    Google Scholar 

  412. Wu X, Liu X, Wei J, Ma J, Deng F, Wei S (2012) Nano-TiO2/PEEK bioactive composite as a bone substitute material: in vitro and in vivo studies. Int J Nanomed 7:1215–1225

    Google Scholar 

  413. Wong KL, Wong CT, Liu WC, Pan HB, Fong MK, Lam WM et al (2009) Mechanical properties and in vitro response of strontium-containing hydroxyapatite/polyetheretherketone composites. Biomaterials 30:3810–3817

    Google Scholar 

  414. Barkarmo S, Wennerberg A, Hoffman M, Kjellin P, Breding K, Handa P et al (2012) Nano-hydroxyapatite-coated PEEK implants.A pilot study in rabbit bone. J Biomed Mater Res A 101:465–471

    Google Scholar 

  415. Han CM, Lee EJ, Kim HE, Koh YH, Kim KN, Ha Y et al (2010) The electron beam deposition of Titanium on polyetheretherketone (PEEK) and the resulting enhanced biological properties. Biomaterials 31:3465–3470

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donatella Duraccio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duraccio, D., Mussano, F. & Faga, M.G. Biomaterials for dental implants: current and future trends. J Mater Sci 50, 4779–4812 (2015). https://doi.org/10.1007/s10853-015-9056-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9056-3

Keywords

Navigation