Skip to main content
Log in

New soluble anthracene-based polymer for opto-electronic applications

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new anthracene-based polymer containing the isosorbide group in the side chain (PPVIs-An) has been synthesized via Wittig reaction. The polymer is soluble in common organic solvents and shows good film-forming abilities. The macromolecular structure was characterized by NMR and FT-IR spectroscopies. This organic material was investigated by differential scanning calorimetry and thermogravimetric analysis and showed an amorphous behavior with a T g of 48 °C. The surface property of the PPVIs-An film was analyzed by contact angle and by atomic force microscopy. The optical properties of this organic semi-conductor were investigated by UV–Visible absorption and photoluminescence spectroscopies. The polymer exhibits a blue fluorescence in dilute solution and a green emission in thin film. The introduction of the polar isosorbide groups shown to improve the PL intensity, and a quantum yield of 72 % was obtained. The absence of ππ interaction between the chromophore units in polymer thin layer at fundamental electronic state was observed, due to the presence of steric repulsions between anthracene and isosorbide groups. The HOMO–LUMO energy levels were determined by cyclic voltammetry. An ITO/PPVIs-An/Al single-layer device was elaborated and investigated using current–voltage measurements which show a turn-on voltage of 5.3 V. The conduction mechanism seems to be a space-charge-limited current with exponential trap distribution at high applied bias voltage. The electrical transport properties of this device were studied as a function of frequency (100 Hz–10 MHz) and applied bias in impedance spectroscopy analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hu W, Tao YT, Sirringhaus H (2012) Organic electronics—new physical chemistry insight. Phys Chem Chem Phys 14:14097–14098

    Article  Google Scholar 

  2. Hu W, Bao Z, Muellen K (2012) Themed issue on ‘‘organic optoelectronic materials’’. J Mater Chem 22:4134–4135

    Article  Google Scholar 

  3. Morgado J, Pereira AT, Bragança AM, Ferreira Q, Fernandes SCM, Freire CSR, Silvestre AJD, Pascoal Neto C, Alcácer L (2013) Self-standing chitosan films as dielectrics in organic thin-film transistors. Express Polym Lett 7:960–965

    Article  Google Scholar 

  4. Xu Q, Wang J, Chen S, Li W, Wang H (2013) Synthesis and characterization of naphthalene diimide polymers based on donor-acceptor system for polymer solar cells. Express Polym Lett 7:842–851

    Article  Google Scholar 

  5. Atesa M, Karazehira T, Saracb SA (2012) Conducting polymers and their applications. Curr Phys Chem 2:224–240

    Article  Google Scholar 

  6. Pope M, Kallmann HP, Magnante PJ (1963) Electroluminescence in organic crystals. J Chem Phys 38:2042–2043

    Article  Google Scholar 

  7. Tang CW, Vanslyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913–915

    Article  Google Scholar 

  8. Burroushes JH, Bradley DDC, Brown AR, Narks RN, Mackay K, Friend RH, Burns PL, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 347:541–593

    Article  Google Scholar 

  9. Weitzel HP, Bohnen A, Miille K (1990) Polyarylenes and poly(arylenevinylene)s. 3. Oligomeric model compounds for poly(9,10-anthrylenevinylene). Die Makromolekulare Chemie 191:2815–2835

    Article  Google Scholar 

  10. Ivan T, Vacareanu L, Grigorasa M (2013) Synthesis of poly(arylene vinylene)s containing carbazole, triphenylamine, and phenothiazine rings in the backbone by cascade Suzuki–Heck Reactions. Int J Polym Mater 62:270–276

    Article  Google Scholar 

  11. Serevicius T, Komskis R, Adomenas P, Adomeniene O, Jankauskas V, Gruodis A, Kazlauskasa K, Jursenas S (2014) Non-symmetric 9,10-diphenylanthracene-based deep-blue emitters with enhanced charge transport properties. Phys Chem Chem Phys 16:7089–7101

    Article  Google Scholar 

  12. Chung DS, Park JW, Park JH, Moon D, Kim GH, Lee HS, Lee DH, Shim HK, Kwon SK, Park CE (2010) High mobility organic single crystal transistors based on soluble triisopropylsilylethynyl anthracene derivatives. J Mater Chem 20:524–530

    Article  Google Scholar 

  13. Chung DS, Park JW, Yun WM, Cha H, Kim YH, Kwon SK, Park CE (2010) Solution-Processed organic photovoltaic cells with anthracene derivatives. ChemSusChem 3:742–748

    Article  Google Scholar 

  14. Hrichi H, Hriz K, Benzarti-Ghédira M, Jaballah N, Ben Chaabane R, Majdoub M, Ben Ouada H (2013) Optical and electrical characterization of thin films based on anthracene polyether polymers. Mater Sci Semicond Process 16:851–858

    Article  Google Scholar 

  15. Gurge RM, Hickl M, Krause G, Lahti PM, Hu B, Yang Z, Karasz FE (1998) Synthesis of a green-emitting alternating block copolymer. Polym Adv Technol 9:504–510

    Article  Google Scholar 

  16. Hu B, Karasz FE (1998) Comparison of electroluminescent quantum efficiencies of PPV and a PPV-related alternating block copolymer. Synth Met 92:157–160

    Article  Google Scholar 

  17. Zrida H, Hriz K, Jaballah N, Sakly N, Kreher D, Majdoub M (2014) New poly(p phenylenevinylene) derivatives containing isosorbide unit in the side-chain. Express Polym Lett 8:709–722

    Article  Google Scholar 

  18. Brutting W, Berleb S, Muckl AG (2001) Device physics of organic light-emitting diodes based on molecular materials. Org Electron 2:1–36

    Article  Google Scholar 

  19. Scherbel J, Nguyen PH, Paasch G, Brutting W, Schwoerer M (1998) Temperature dependent broadband impedance spectroscopy on poly-(p-phenylene-vinylene) light-emitting diodes. J Appl Phys 83:5045–5055

    Article  Google Scholar 

  20. Hriz K, Jaballah N, Chemli M, Fave JL, Majdoub M (2011) Synthesis and characterization of new anthracene-based semiconducting polyethers. J Appl Polym Sci 119:1443–1449

    Article  Google Scholar 

  21. Hriz K, Chemli M, Jaballah N, Fave JL, Majdoub M (2011) Synthesis, characterization and optical properties of distyrylanthracene-based polymers. High Perform Polym 23:290–299

    Google Scholar 

  22. Feng L, Chen Z (2005) Synthesis and photoluminescent properties of polymer containing perylene and fluorene units. Polymer 46:3952–3956

    Article  Google Scholar 

  23. Melhuish WH (1961) Quantum efficiencies of fluorescence of organic substances effect of solvent and concentration the fluorescent solute. J Phys Chem 65:229–235

    Article  Google Scholar 

  24. Hriz K, Jaballah N, Fave JL, Majdoub M (2012) Synthesis and characterization of new anthracene-based semi-conducting materials. J Mater Sci 47:8067–8075. doi:10.1002/app.32659

    Article  Google Scholar 

  25. Yang M, Rothberg LJ, Papadimitrakopoulos F, Galvin ME, Miller TM (1994) Defect quenching of conjugated polymer luminescence. Phys Rev Lett 73:744–747

    Article  Google Scholar 

  26. Wang F, He F, Xie Z, Li M, Hanif M, Gu X, Yang B, Zhang H, Lu P, Ma Y (2008) A solution processible poly(p-phenylene vinylene) without alkyl substitution: introducing the cis-vinylene segments in polymer chain for improved solubility, blue emission, and high efficiency. J Polym Sci Part A 46:5242–5250

    Article  Google Scholar 

  27. Ndayikengurukiye H, Jacobs S, Tachelet W, Van Der Looy J, Pollaris A, Geise JH, Ciaeys M, Kauffmann JM, Janietz S (1997) Alkoxylated p-phenylenevinylene oligomers: synthesis and spectroscopic and electrochemical properties. Tetrahedron 53:13811–13828

    Article  Google Scholar 

  28. Rouis A, Echabaane M, Sakly N, Dumazet-Bonnamour I, Ben Ouadaa H (2013) Electrochemical analysis of a PPV derivative thin film doped with ß-ketoimine calix[4]arene in the dark and under illumination for the detection of Hg2+ ions. Synth Met 164:78–87

    Article  Google Scholar 

  29. Van Oss CJ, Chaudhury MK, Good RJ (1987) Monopolar surfaces. Adv Colloid Interface Sci 28:35–64

    Article  Google Scholar 

  30. Gondeka E, Kityk IV, Danel A (2008) Some anthracene derivatives with N,N-dimethylamine moieties as materials for photovoltaic devices. Mater Chem Phys 112:301–304

    Article  Google Scholar 

  31. Huang YF, Shiu YJ, Hsu JH, Lin SH, Su AC, Peng KY, Chen SA, Fann WS (2007) Aggregate versus excimer emissions from poly(2,5-di-n-octyloxy-1,4-phenylenevinylene). J Phys Chem C 111:5533–5540

    Article  Google Scholar 

  32. Feng L, Chen Z (2005) Synthesis and photoluminescent properties of polymer containing perylene and fluorene units. Polymer 46:3952–3960

    Article  Google Scholar 

  33. Hrichi H, Hriz K, Jaballah N, Ben Chaâbane R, Majdoub M (2013) New anthracene-based soluble polymers: optical and charge carrier transport properties. J Polym Res 20:241–300

    Article  Google Scholar 

  34. Fan B, Sun Q, Song N, Wang H, Fan H, Li Y (2006) Electroluminescent properties of a partially-conjugated hyperbranched poly(p-phenylene vinylene). Polym Adv Technol 17:145–149

    Article  Google Scholar 

  35. Cheng M, Xiao Y, Yu WL, Chen ZK, Lai YH, Huang W (2000) Synthesis and characterization of a cyano-substituted electroluminescent polymer with well-defined conjugation length. Thin Solid Films 363:110–113

    Article  Google Scholar 

  36. Bredas JL, Silbey R, Bordeaux DS, Chance RR (1983) Chain-length dependence of electronic and electrochemical properties of conjugated systems: polyacetylene, polyphenylene, polythiophene, and polypyrrole. J Am Chem Soc 105:6555–6559

    Article  Google Scholar 

  37. Huang YF, Shiu YJ, Hsu JH, Lin SH, Su AC, Peng KY, Chen SA, Fann WS (2007) Breaking of the supercooled state of water by a nanocavity with disordered atomic configuration I: freezing behavior of sorbed water into polymethylmethacrylate film as examined by Fourier transform infrared spectroscopy. J Phys Chem B 111:5533–5535

    Article  Google Scholar 

  38. Jeglinski SA, Hollier ME, Gold JF, Vardeny ZV, Ding Y, Barton T (1994) Electrically symmetric poly(phenylene acetylene) diodes. Mol Cryst Liq Cryst 256:555–561

    Article  Google Scholar 

  39. Kao KC, Hwang W (1981) Electrical transport in solids. Pergamon Press, Oxford

    Google Scholar 

  40. Michelotti F, Borghese F, Bertolotti M, Cianci E, Foglietti V (2000) Alq3/PVK heterojunction electroluminescent devices. Synth Met 111:105–108

    Article  Google Scholar 

  41. Ma D, Hümmelgen IA, Jing X, Hong Z, Wang L, Zhao X, Wang F, Karas FE (2000) Charge transport in a blue-emitting alternating block copolymer with a small spacer to conjugated segment length ratio. J Appl Phys 87:312–317

    Article  Google Scholar 

  42. Bruetting W, Berleb S, Mueckl AG (2001) Space-charge limited conduction with a Reld and temperature dependent mobility in Alq light-emitting devices. Synth Met 122:99–104

    Article  Google Scholar 

  43. Meier M, Karg S, Riess M (1997) Light-emitting diodes based on poly-p-phenylene-vinylene: impedance spectroscopy. J Appl Phys 82:1961–1966

    Article  Google Scholar 

  44. Chen CC, Huang BC, Lin MS, Lu YJ, Cho TY, Chang CH, Tien KC, Liu SH, Ke TH, Wu CC (2010) Impedance spectroscopy and equivalent circuits of conductively doped organic hole-transport materials. Org Electron 11:1901–1908

    Article  Google Scholar 

  45. Kim SH, Lim SC, Lee JH, Zyung T (2005) Conduction mechanism of organic semiconductor Alq 3: impedance spectroscopy analysis. Curr Appl Phys 5:35–37

    Article  Google Scholar 

  46. Jonscher AK (1967) Electronic properties of amorphous dielectric films. Thin Solid Films 1:213–234

    Article  Google Scholar 

  47. Dridi C, Benzarti-Ghédira M, Vocanson F, Ben Chaabane R, Davenas J, Ben Ouada H (2009) Optical and electrical properties of semi-conducting calix[5,9]arene thin films with potential applications in organic electronics. Semicond Sci Technol 24:105007–105017

    Article  Google Scholar 

  48. Jonda C, Mayer ABR (1999) Investigation of the electronic properties of organic light-emitting devices by impedance spectroscopy. Chem Mater 11:2429–2435

    Article  Google Scholar 

  49. Reddy VS, Das S, Ray SK, Dhar A (2007) Studies on conduction mechanisms of pentacene based diodes using impedance spectroscopy. J Phys D 40:7687–7693

    Article  Google Scholar 

  50. Campbell AJ, Bradley DDC, Lidzey DG (1997) Space-charge limited conduction with traps in poly(phenylene vinylene) light emitting diodes. J Appl Phys 82:6326–6342

    Article  Google Scholar 

  51. Chen CC, Huang BC, Lin MS, Lu YJ, Cho TY, Chang CH, Tien KC, Liu SH, Ke TH, Wu CC (2010) Impedance spectroscopy and equivalent circuits of conductively doped organic hole-transport materials. Org Electron 11:1901–1908

    Article  Google Scholar 

  52. Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15:627–637

    Article  Google Scholar 

  53. Kim SH, Choi KH, Lee HM, Hwang DH, Do LM, Chu HY, Zyung T (2000) Impedance spectroscopy of single- and double-layer polymer light-emitting diode. J Appl Phys 87:882–888

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of High Education and Research fund of Tunisia. The authors thank Ms Amna Debbebi and Miss Nadia Msaddek (Faculty of Sciences, Monastir) for the NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha Majdoub.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zrida, H., Hriz, K., Jaballah, N. et al. New soluble anthracene-based polymer for opto-electronic applications. J Mater Sci 51, 680–693 (2016). https://doi.org/10.1007/s10853-015-9037-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9037-6

Keywords

Navigation