Skip to main content
Log in

Mechanical properties and relaxation behavior of crumpled aluminum foils

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Crumpled metal foils are a new type of lightweight cellular materials. The engineering applications of crumpled foils require a deep understanding of their response to mechanical loads. In order to establish a comprehensive understanding of the mechanical behavior of crumpled foils, in the present study, the uniaxial compression experiments were performed on cylindrical samples of different packing densities manufactured by die compaction of randomly crumpled aluminum foils. This has allowed us to deduce the constitutive stress–strain relationship and quantify the relaxation behavior of crumpled foils. Consequently, we determine the mechanical properties (apparent Young modulus, yield stress, and longitudinal stiffness modulus) that govern the deformation behavior of crumpled samples in the whole range of relative deformation. The power-law dependence of mechanical properties on the initial packing density is revealed. The stress and strain relaxation behavior of crumpled foils is also elucidated. These findings provide further insight into the deformation behavior and relaxation mechanisms of crumpled aluminum foils. The knowledge of the mechanical and relaxation characteristics of crumpled aluminum foils is useful for their engineering application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wood AJ (2002) Witten’s lectures on crumpling. Phys A 313:83–109

    Article  Google Scholar 

  2. Balankin AS, Montes de Oca RC, Samayoa D (2007) Intrinsically anomalous self-similarity of randomly folded matter. Phys Rev E 76:032101

    Article  Google Scholar 

  3. Lin YC, Sun JM, Yang HW, Hwu Y, Wang CL, Hong TM (2009) X-ray tomography of a crumpled plastoelastic thin sheet. Phys Rev E 80:066114

    Article  Google Scholar 

  4. Balankin AS, Samayoa D, Miguel IA, Patiño J, Martínez MA (2010) Fractal topology of hand-crumpled paper. Phys Rev E 81:061126

    Article  Google Scholar 

  5. Gomes MAF, Jyh TI, Ren TI, Rodrigues IM, Furtado CBS (1989) Mechanically deformed crumpled surfaces. J Phys D Appl Phys 22:1217–1221

    Article  Google Scholar 

  6. DiDonna BA, Witten TA (2001) Anomalous strength of membranes with elastic ridges. Phys Rev Lett 87:206105

    Article  Google Scholar 

  7. Matan K, Williams RB, Witten TA, Nagel SR (2002) Crumpling a thin sheet. Phys Rev Lett 88:076101

    Article  Google Scholar 

  8. Vliegenthart GA, Gompper G (2006) Forced crumpling of self-avoiding elastic sheets. Nat Mater 5:216–221

    Article  Google Scholar 

  9. Balankin AS, Susarrey O (2008) Entropic rigidity of a crumpling network in a randomly folded thin sheet. Phys Rev E 77:051124

    Article  Google Scholar 

  10. Deboeuf S, Katzav E, Boudaoud A, Bonn D, Adda-Bedia M (2013) Comparative study of crumpling and folding of thin sheets. Phys Rev Lett 110:104301

    Article  Google Scholar 

  11. Balankin AS, Horta A, García G, Gayosso F, Sanchez H, Martínez CL (2013) Fractal features of a crumpling network in randomly folded thin matter and mechanics of sheet crushing. Phys Rev E 87:052806

    Article  Google Scholar 

  12. Bouaziz O, Masse JP, Allain S, Orgéas L, Latil P (2013) Compression of crumpled aluminum thin foils and comparison with other cellular materials. Mater Sci Eng A 570:1–7

    Article  Google Scholar 

  13. Cottrino S, Viviés P, Fabrégue D, Maire E (2014) Mechanical properties of crumpled aluminum foils. Acta Mater 81:98–110

    Article  Google Scholar 

  14. Baimova JÁ, Korznikova EA, Dmitriev SV, Liu B, Zhou K (2014) Review on crumpled graphene: unique mechanical properties. Rev Adv Mater Sci 39:69–83

    Google Scholar 

  15. Korznikova EA, Baimova JA, Dmitriev SV, Korznikov AV, Mulyukov RR (2014) Mechanical behavior of crumpled sheet materials subjected to uniaxial compression. Rev Adv Mater Sci 39:92–98

    Google Scholar 

  16. Kramer EM, Witten TA (1997) Stress condensation in crushed elastic manifolds. Phys Rev Lett 78:1303–1306

    Article  Google Scholar 

  17. Schroll RD, Katifori E, Davidovitch B (2011) Elastic building blocks for confined sheets. Phys Rev Lett 106:074301

    Article  Google Scholar 

  18. Balankin AS, Campos I, Martínez OA, Susarrey O (2007) Scaling properties of randomly folded plastic sheets. Phys Rev E 75:051117

    Article  Google Scholar 

  19. Wang WN, Jiang Y, Biswas P (2012) Evaporation-induced crumpling of graphene oxide nanosheets in aerosolized droplets: confinement force relationship. J Phys Chem Lett 3:3228–3233

    Article  Google Scholar 

  20. Witten TA (2007) Stress focusing in elastic sheets. Rev Mod Phys 79:643–675

    Article  Google Scholar 

  21. Balankin AS, Morales D, Pineda E, Horta A, Martínez MA, Samayoa D (2009) Topological crossovers in the forced folding of self-avoiding matter. Phys A 388:1780–1790

    Article  Google Scholar 

  22. Tallinen T, Aström JA, Timonen J (2009) The effect of plasticity in crumpling of thin sheets. Nat Mater 8:25–29

    Article  Google Scholar 

  23. Aharoni H, Sharon E (2010) Direct observation of the temporal and spatial dynamics during crumpling. Nat Mater 9:993–997

    Article  Google Scholar 

  24. Tallinen T, Aström JA, Kekäläinen P, Timonen J (2010) Mechanical and Thermal Stability of Adhesive Membranes with Nonzero Bending Rigidity. Phys Rev Lett 105:026103

    Article  Google Scholar 

  25. Liou SF, Lo ChCh, Chou MH, Hsiao PY, Hong TM (2014) Effect of ridge-ridge interactions in crumpled thin sheets. Phys Rev E 89:022404

    Article  Google Scholar 

  26. Balankin AS, Flores L (2015) Edwards’s statistical mechanics of crumpling networks in crushed self-avoiding sheets with finite bending rigidity. Phys Rev E 91:032109

    Article  Google Scholar 

  27. Aström JA, Timonen J, Karttunen M (2004) Crumpling of a Stiff Tethered Membrane. Phys Rev Lett 93:244301

    Article  Google Scholar 

  28. Balankin AS, Susarrey O, Cortes R, Samayoa D, Martínez J, Mendoza MA (2006) Intrinsically anomalous roughness of randomly crumpled thin sheets. Phys Rev E 74:061602

    Article  Google Scholar 

  29. Gomes MAF, Donato CC, Campello SL, De Souza RE, Cassia-Moura R (2007) Structural properties of crumpled cream layers. J Phys D 40:3665–3669

    Article  Google Scholar 

  30. Tallinen T, Aström JA, Timonen J (2008) Deterministic folding in stiff elastic membranes. Phys Rev Lett 101:106101

    Article  Google Scholar 

  31. Balankin AS, Matías S, Samayoa D, Patiño J, Espinoza B, Martínez-González CL (2011) Slow kinetics of water escape from randomly folded foils. Phys Rev E 83:036310

    Article  Google Scholar 

  32. Cambou AD, Menon N (2011) Three-dimensional structure of a sheet crumpled into a ball. PNAS 108:14741–14745

    Article  Google Scholar 

  33. Cranford SW, Buehler MJ (2011) Packing efficiency and accessible surface area of crumpled graphene. Phys Rev B 84:205451

    Article  Google Scholar 

  34. Lin YC, Wang YL, Liu Y, Hong TM (2008) Crumpling under an ambient pressure. Phys Rev Lett 101:125504

    Article  Google Scholar 

  35. Bai W, Lin YCh, Hou TK, Hong TM (2010) Scaling relation for a compact crumpled thin sheet. Phys Rev E 82:066112

    Article  Google Scholar 

  36. Baimova JA, Liu B, Dmitriev SV, Zhou K (2015) Mechanical properties of crumpled graphene under hydrostatic and uniaxial compression. J Phys D 48:095302

    Article  Google Scholar 

  37. Balankin AS, Samayoa D, Pineda E, Cortes R, Horta A, Martínez MA (2008) Power law scaling of lateral deformations with universal Poisson’s index for randomly folded thin sheets. Phys Rev B 77:125421

    Article  Google Scholar 

  38. Seizilles G, Bayart E, Adda-Bedia M, Boudaoud A (2011) Bending waves in crumpled sheets. Phys Rev E 84:065602(R)

    Article  Google Scholar 

  39. Kramer E, Lobkovsky AE (1996) Universal power law in the noise from a crumpled elastic sheet. Phys Rev E 53:1465–1469

    Article  Google Scholar 

  40. Houle PA, Sethna JP (1996) Acoustic emission from crumpling paper. Phys Rev E 54:278–283

    Article  Google Scholar 

  41. Mendes RS, Malacarne LC, Santos RPB, Ribeiro HV, Picoli S (2010) Earthquake-like patterns of acoustic emission in crumpled plastic sheets. EPL 92:29001

    Article  Google Scholar 

  42. Abobaker M, Bouaziz O, Lebyodkin M, Lebedkina A, Shashkov IV (2015) Avalanche dynamics in crumpled aluminum thin foils. Scr Mater 99:17–20

    Article  Google Scholar 

  43. Albuquerque RF, Gomes MAF (2002) Stress relaxation in crumpled surfaces. Phys A 310:377–383

    Article  Google Scholar 

  44. Susarrey O, Nuñez MM, Tamayo P, Balankin AS (2009) Mechanics of randomly folded thin materials. Adv Mater Res 65:33–38

    Article  Google Scholar 

  45. Dierking I, Archer P (2008) Sudden ridge collapse in the stress relaxation of thin crumpled polymer films. Phys Rev E 77:051608

    Article  Google Scholar 

  46. Balankin AS, Susarrey O, Hernández F, Patiño J (2011) Slow dynamics of stress and strain relaxation in randomly crumpled elasto-plastic sheets. Phys Rev E 84:021118

    Article  Google Scholar 

  47. Balankin AS, Susarrey O, Tapia V (2013) Statistics of energy dissipation and stress relaxation in a crumpling network of randomly folded aluminum foils. Phys Rev E 88:032402

    Article  Google Scholar 

  48. Balankin AS, Susarrey O (2009) Fractal geometry and mechanics of randomly folded thin sheets. In: Borodich M (ed) IUTAM Symposium on Scaling in Solid Mechanics, IUTAM Bookseries, Vol.10, pp 233–241

  49. Hui Ch, Zhang Y, Zhang L, Sun R, Liu F (2013) Crumpling of a pyrolytic graphite sheet. J Appl Phys 114:163512

    Article  Google Scholar 

  50. Hwang SJ, Lee YD, Park YB, Lee JH, Jeong ChO, Joo YCh (2006) In situ study of stress relaxation mechanisms of pure Al thin films during isothermal annealing. Scr Mater 54:1841–1846

    Article  Google Scholar 

  51. Warburton SC, Donald AM, Smith AC (1992) Structure and mechanical properties of brittle starch foams. J Mater Sci 27:1469–1474. doi:10.1007/BF00542905

    Article  Google Scholar 

  52. Zhou J, Allameh S, Soboyejo WO (2005) Microscale testing of the strut in open cell aluminum foams. J Mater Sci 40:429–439. doi:10.1007/s10853-005-6100-8

    Article  Google Scholar 

  53. Meza LR (2014) Greer JR (2014) Mechanical characterization of hollow ceramic nanolattices. J Mater Sci 49:2496–2508. doi:10.1007/s10853-013-7945-x

    Article  Google Scholar 

  54. Gibson LJ, Ashby MF (1999) Cellular Solids: Structure and Properties, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  55. McCullough KYG, Fleck NA, Ashby MF (1999) Uniaxial stress–strain behaviour of aluminium alloy foams. Acta Mater 47:2323–2330

    Article  Google Scholar 

  56. Fusheng H, Zhengang Z (1999) The mechanical behavior of foamed aluminum. J Mater Sci 34:291–299. doi:10.1023/A:1004401521842

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the PEMEX under the research SENER-CONACYT Grant No. 143927.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander S. Balankin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balankin, A.S., Cruz, M.A.M., Caracheo, L.A.A. et al. Mechanical properties and relaxation behavior of crumpled aluminum foils. J Mater Sci 50, 4749–4761 (2015). https://doi.org/10.1007/s10853-015-9030-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9030-0

Keywords

Navigation