Skip to main content
Log in

Influence of the grain boundary character on the temperature of transition to complete wetting in the Cu–In system

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The incomplete to complete grain boundary (GB) wetting transition is controlled by GB energy and, therefore, by GB character. To find the GB character dependence of the wetting transition, experiments were carried out on polycrystalline Cu–In alloys, which are known to exhibit wetting behaviour between 715 and 986 °C. Electron backscatter diffraction was applied to determine the two-dimensional GB character, using the coincidence site lattice (CSL) model and applying the Brandon criterion. Special wetting behaviour was found in those GBs characterised as low-angle, Σ3 and Σ11. The low-angle and Σ3 GBs were not wetted until the sample melted, while the temperature for the transition to complete wetting of Σ11 GBs was over 100 °C higher than that for complete wetting of all other types of GB, including other CSL GB as well as random GB. It might be that a different Brandon type criterion is needed in the case of GB wetting to show the “special” wetting behaviour of the CSL GBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. German RM, Suri P, Park SJ (2009) Review: liquid phase sintering. J Mater Sci 44:1–39. doi:10.1007/s10853-008-3008-0

    Article  Google Scholar 

  2. Ross D, Bonn D, Meunier J (1999) Observation of short-range critical wetting. Nature 400:737–739. doi:10.1038/23425

    Article  Google Scholar 

  3. Watson EB (1982) Melt infiltration and magma evolution. Geology 10:236–240. doi:10.1130/0091-7613(1982)10<236:MIAME>2.0.CO;2

    Article  Google Scholar 

  4. Laporte D, Watson E (1995) Experimental and theoretical constraints on melt distribution in crustal sources: the effect of crystalline anisotropy on melt interconnectivity. Chem Geol 124:161–184. doi:10.1016/0009-2541(95)00052-N

    Article  Google Scholar 

  5. Straumal B, Gust W (1996) Lines of grain boundary phase transitions in bulk phase diagrams. Mater Sci Forum 207–209:59–68. doi:10.4028/www.scientific.net/MSF.207-209.59

    Article  Google Scholar 

  6. Straumal B, Gust W, Watanabe T (1999) Tie lines of the grain boundary wetting phase transition in the Zn-rich part of the Zn–Sn phase diagram. Mater Sci Forum 294–296:411–414. doi:10.4028/www.scientific.net/MSF.294-296.411

    Article  Google Scholar 

  7. Cahn JW (1977) Critical point wetting. J Chem Phys 66:3667–3672. doi:10.1063/1.434402

    Article  Google Scholar 

  8. Ebner C, Saam W (1977) New phase-transition phenomena in thin argon films. Phys Rev Lett 38:1486–1489. doi:10.1103/PhysRevLett.38.1486

    Article  Google Scholar 

  9. Polyakov SA, Straumal BB, Mittemeijer EJ (2006) Temperature influence on the faceting of Σ3 and Σ9 grain boundaries in Cu. Acta Mater 54:167–172. doi:10.1016/j.actamat.2005.08.037

    Article  Google Scholar 

  10. Schölhammer J, Baretzky B, Gust W, Mittemeijer E, Straumal B (2001) Grain boundary grooving as an indicator of grain boundary phase transformations. Interface Sci 9:43–53. doi:10.1023/A:1011266729152

    Article  Google Scholar 

  11. Straumal BB, Polyakov SA, Bischoff E, Gust W, Mittemeijer EJ (2001) Faceting of Σ3 and Σ9 grain boundaries in copper. Interface Sci 9:287–292. doi:10.1023/A:1015174921561

    Article  Google Scholar 

  12. Straumal BB, Klinger LM, Shvindlerman LS (1984) The effect of crystallographic parameters of interphase boundaries on their surface tension and parameters of the boundary diffusion. Acta Metall 32:1355–1364. doi:10.1016/0001-6160(84)90081-6

    Article  Google Scholar 

  13. Straumal AB, Bokstein BS, Petelin AL, Straumal BB, Baretzky B, Rodin AO, Nekrasov AN (2012) Apparently complete grain boundary wetting in Cu–In alloys. J Mater Sci 47:8336–8343. doi:10.1007/s10853-012-6773-8

    Article  Google Scholar 

  14. Kucheev YO, Straumal AB, Mogil’nikova IV, Straumal BB, Gusak AM, Baretzky B (2012) Wetting of grain boundaries in hard-magnetic Nd–Fe–B alloys. Russ J Non-Ferr Met 53:450–456. doi:10.3103/S106782121206003X

    Article  Google Scholar 

  15. Kogtenkova OA, Straumal BB, Protasova SG, Gornakova AS, Zięba P, Czeppe T (2012) Effect of the wetting of grain boundaries on the formation of a solid solution in the Al–Zn system. JETP Lett 96:380–384. doi:10.1134/S0021364012180063

    Article  Google Scholar 

  16. Straumal BB, Kucheev YO, Efron LI, Petelin AL, Majumdar JD, Manna I (2012) Complete and incomplete wetting of ferrite grain boundaries by austenite in the low-alloyed ferritic steel. J Mater Eng Perform 21:667–670. doi:10.1007/s11665-012-0130-6

    Article  Google Scholar 

  17. Straumal BB, Kucheev YO, Yatskovskaya IL, Mogilnikova IV, Schütz G, Nekrasov AN, Baretzky B (2012) Grain boundary wetting in the NdFeB-based hard magnetic alloys. J Mater Sci 47:8352–8359. doi:10.1007/s10853-012-6618-5

    Article  Google Scholar 

  18. Straumal BB, Gornakova AS, Kucheev YO, Baretzky B, Nekrasov AN (2012) Grain boundary wetting by a second solid phase in the Zr–Nb alloys. J Mater Eng Perform 21:721–724. doi:10.1007/s11665-012-0158-7

    Article  Google Scholar 

  19. Wynblatt P, Takashima M (2001) Correlation of grain boundary character with wetting behaviour. Interface Sci 9:265–273. doi:10.1023/A:1015162929100

    Article  Google Scholar 

  20. Wynblatt P, Takashima M (2001) An empirical model of grain boundary energy and its application to grain boundary wetting. Trans JWRI 30:11–21

    Google Scholar 

  21. Felberbaum L, Rossoll A, Mortensen A (2005) A stereoscopic method for dihedral angle measurement. J Mater Sci 40:3121–3127. doi:10.1007/s10853-005-2673-5

    Article  Google Scholar 

  22. Empl D, Felberbaum L, Laporte V, Chatain D, Mortensen A (2009) Dihedral angles in Cu–1 wt% Pb: grain boundary energy and grain boundary triple line effects. Acta Mater 57:2527–2537. doi:10.1016/j.actamat.2009.02.009

    Article  Google Scholar 

  23. Kronberg ML, Wilson FH (1949) Secondary recrystallization in copper. Trans AIME 185:501–514

    Google Scholar 

  24. Brandon D (1966) The structure of high-angle grain boundaries. Acta Metall 14:1479–1484. doi:10.1016/0001-6160(66)90168-4

    Article  Google Scholar 

  25. Shvindlerman L, Straumal B (1985) Regions of existence of special and non-special grain boundaries. Acta Metall 33:1735–1749. doi:10.1016/0001-6160(85)90168-3

    Article  Google Scholar 

  26. Straumal B, Muschik T, Gust W, Predel B (1992) The wetting transition in high and low energy grain boundaries in the Cu (In) system. Acta Metall Mater 40:939–945. doi:10.1016/0956-7151(92)90070-U

    Article  Google Scholar 

  27. Massalski TB (ed) (1990) Binary alloy phase diagrams. ASM International, Materials Park

    Google Scholar 

  28. Polkowski W, Jóźwik P, Polański M, Bojar Z (2013) Microstructure and texture evolution of copper processed by differential speed rolling with various speed asymmetry coefficient. Mater Sci Eng 564:289–297. doi:10.1016/j.msea.2012.12.006

    Article  Google Scholar 

  29. Adams BL, Wright SI, Kunze K (1993) Orientation imaging: the emergence of a new microscopy. Metal Trans A 24:819–831. doi:10.1007/BF02656503

    Article  Google Scholar 

  30. Protsenko P, Kucherinenko Y, Robaut F, Traskine V, Eustathopoulos N (2003) Misorientation effects on grain boundary grooving of Ni by liquid Ag. Def Diffus Forum 216–217:225–230. doi:10.4028/www.scientific.net/DDF.216-217.225

    Article  Google Scholar 

  31. McLean M (1973) Grain-boundary energy of copper at 1030 °C. J Mater Sci 8:571–576. doi:10.1007/BF00550462

    Article  Google Scholar 

  32. Takata N, Ikeda K, Yoshida F, Nakashima H, Abe H (2004) Grain boundary structure and its energy of symmetric tilt boundary in copper. Mater Sci Forum 467–470:807–812. doi:10.4028/www.scientific.net/MSF.467-470.807

    Article  Google Scholar 

  33. Weckman AV, Dragunov AS, Dem’yanov BF, Adarich NV (2012) Energy spectrum of tilt grain boundaries in copper. Russ Phys J 55:799–806. doi:10.1007/s11182-012-9883-5

    Article  Google Scholar 

  34. Mori T, Miura H, Tokita T, Haji J, Kato M (1988) Determination of the energies of [001] twist boundaries in Cu with the shape of boundary SiO2 particles. Philos Mag Lett 58:11–15. doi:10.1080/09500838808214724

    Article  Google Scholar 

  35. Palumbo G, Aust KT, Lehockey EM, Erb U, Lin P (1998) On a more restrictive geometric criterion for “special” CSL grain boundaries. Scr Mater 38:1685–1690. doi:10.1016/S1359-6462(98)00077-3

    Article  Google Scholar 

  36. King AH, Shekhar S (2006) What does it mean to be special? The significance and application of the Brandon criterion. J Mater Sci 41:7675–7682. doi:10.1007/s10853-006-0665-8

    Article  Google Scholar 

  37. Randle V (2006) ‘Special’ boundaries and grain boundary plane engineering. Scr Mater 54:1011–1015. doi:10.1016/j.scriptamat.2005.11.050

    Article  Google Scholar 

  38. Randle V (2001) A methodology for grain boundary plane assessment by single-section trace analysis. Scr Mater 44:2789–2794. doi:10.1016/S1359-6462(01)00975-7

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank Mrs. Kornelia Strieso and Mr. Norbert Lindner for help in metallographic preparation and SEM measurements. The authors gratefully acknowledge the financial support of the Russian Foundation for Basic Research (Grant 14-08-00972), The Ministry of Education and Science of the Russian Federation in the Framework of Increase Competitiveness Program of MISiS and the Erasmus Mundus Action 2 Programme of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander B. Straumal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Straumal, A.B., Yardley, V.A., Straumal, B.B. et al. Influence of the grain boundary character on the temperature of transition to complete wetting in the Cu–In system. J Mater Sci 50, 4762–4771 (2015). https://doi.org/10.1007/s10853-015-9025-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9025-x

Keywords

Navigation