Skip to main content

Advertisement

Log in

CO2 absorption properties of Ti- and Na-doped porous Li4SiO4 prepared by a sol–gel process

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To improve the carbon dioxide (CO2) absorption performance of lithium orthosilicate (Li4SiO4), tablet-like Li4Si1−x Ti x O4 and Li3.9Na0.1Si0.96Ti0.04O4 sorbents with loose and porous texture were prepared by a sol–gel process. The relationship between the Ti doping and volume expansion was studied for the first time. The results indicated that the Ti presence into the Li4SiO4 structure inhibited the growth of grains and abated the volume expansion. The X-ray diffraction and scanning electron microscopy results showed that the loose and porous solid solutions with similar phase crystallite but different grain sizes could obtain by heat treatment of precursor at 700 °C. The optimum Ti content of Li4Si1−x Ti x O4 seems to be 0.04 of Li4Si0.96Ti0.04O4. And the CO2 capture behaviors of Li3.9Na0.1Si0.96Ti0.04O4 were better than Li4Si0.96Ti0.04O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Xu H, Cheng W, Jin X (2013) Effect of the particle size of quartz powder on the synthesis and CO2 absorption properties of Li4SiO4 at high temperature. Ind Eng Chem Res 52(5):1886–1891

    Article  Google Scholar 

  2. Seggiani M, Puccini M, Vitolo S (2011) High-temperature and low concentration CO2 sorption on Li4SiO4 based sorbents: study of the used silica and doping method effects. Int J Greenh Gas Control 5(4):741–748

    Article  Google Scholar 

  3. Qi Z, Daying H, Yang L (2013) Analysis of CO2 sorption/desorption kinetic behaviors and reaction mechanisms on Li4SiO4. AIChE J 59(3):901–911

    Article  Google Scholar 

  4. Nair BN, Burwood RP, Goh VJ (2009) Lithium based ceramic materials and membranes for high temperature CO2 separation. Prog Mater Sci 54(5):511–541

    Article  Google Scholar 

  5. Mejía-Trejo VL, Fregoso-Israel E, Pfeiffer H (2008) Textural, structural, and CO2 chemisorption effects produced on the lithium orthosilicate by its doping with sodium (Li4−xNaxSiO4). Chem Mater 20(22):7171–7176

    Article  Google Scholar 

  6. Radfarnia HR, liuta MCI (2011) Surfactant-template/ultrasound-assisted method for the preparation of porous nanoparticle lithium zirconate. Ind Eng Chem Res 50(15):9295–9305

    Article  Google Scholar 

  7. Kato M, Yoshikawa S, Nakagawa KJ (2002) Carbon dioxide absorption by lithium orthosilicate in a wide range of temperature and carbon dioxide concentrations. J Mater Sci Lett 21(16):485–487

    Article  Google Scholar 

  8. Gauer C, Heschel W (2006) Doped lithium orthosilicate for absorption of carbon dioxide. J Mater Sci 41(8):2405–2409. doi:10.1007/s10853-006-7070-1

    Article  Google Scholar 

  9. Ida JI, Xiong R, Lin YS (2004) Synthesis and CO2 sorption properties of pure and modified lithium zirconate. Sep Purif Technol 36(1):41

    Article  Google Scholar 

  10. Xiong R, Ida J, Lin YS (2003) Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate. Chem Eng Sci 58(19):4377–4385

    Article  Google Scholar 

  11. Essaki K, Kato M, Nakagawa K (2006) CO2 removal at high temperature using pace bed of lithium silicate pellets. J Ceram Soc Jpn 114(9):739–742

    Article  Google Scholar 

  12. Rodrı´guez-Mosqueda R, Pfeiffer H (2010) Thermokinetic analysis of the CO2 chemisorption on Li4SiO4 by using different gas flow rates and particle sizes. J Phys Chem A 114(13):4535–4541

    Article  Google Scholar 

  13. Venegas MJ, Fregoso-Israel E, Escamilla R (2007) Kinetic and reaction mechanism of CO2 sorption on Li4SiO4: study of the particle size effect. Ind Eng Chem Res 46(8):2407–2412

    Article  Google Scholar 

  14. Zhang S, Zhang Q, Wang H (2014) Absorption behaviors study on doped Li4SiO4 under a humidified atmosphere with low CO2 concentration. Int J Hydrogen Energy 39(31):17913–17920

    Article  Google Scholar 

  15. Pfeiffer H, Lima E, Bosch P (2006) Lithium-Sodium metazirconate solid solutions, Li2−x Na x ZrO3 (0 ≤ x ≤ 2): a hierarchical architecture. Chem Mater 18(11):2642–2647

    Article  Google Scholar 

  16. Pfeiffer H, Vazquez C, Lara VH, Bosch P (2007) Thermal behavior and CO2 absorption of Li2−x Na x ZrO3 solid solutions. Chem Mater 19(4):922–926

    Article  Google Scholar 

  17. Veliz-Enriquez MY, Gonzalez G, Pfeiffer H (2007) Synthesis and CO2 capture evaluation of Li2−x K x ZrO3 solid solutions and crystal structure of a new lithium–potassium zirconate phase. J Solid State Chem 180(9):2485–2492

    Article  Google Scholar 

  18. Alcántar-Vázquez B, Diaz C, Romero-Ibarra IC (2013) Structural and CO2 chemisorption analyses on Na2(Zr1−x Al x )O3 solid solutions. J Phys Chem C 117(32):16483–16491

    Article  Google Scholar 

  19. Ortiz-Landeros J, Romero-Ibarra IC, Gómez-Yáñez C (2013) Li4+x (Si1−x Al x )O4 Solid solution mechanosynthesis and kinetic analysis of the CO2 chemisorption process. J Phys Chem C. 117(12):6303–6311

    Article  Google Scholar 

  20. Subha PV, Nair BN, Hareesh P (2014) Enhanced CO2 absorption kinetics in lithium silicate platelets synthesized by a sol–gel approach. J Mater Chem A 2(32):12792–12798

    Article  Google Scholar 

  21. Ortiz-Landeros J, Gómez-Yáñez C, Palacios-Romero LM (2012) Structural and thermochemical chemisorption of CO2 on Li4+x (Si1−x Al x )O4 and Li4–x (Si1−x V x )O4 solid solutions. J Phys Chem A 116(12):3163–3171

    Article  Google Scholar 

  22. Knitter R, Kolb MHH, Kaufmann U (2013) Fabrication of modified lithium orthosilicate pebbles by addition of titania. J Nucl Mater 442(1):S433–S436

    Article  Google Scholar 

  23. Huheey JE (1981) Inorganic Chemistry, 2nd edn. Harper and Row, New York

    Google Scholar 

  24. Cotton FA, Wilkinson G (2001) Advanced inorganic chemistry, 9th edn. Limusa Noriega, Mexico

    Google Scholar 

  25. Duan Y, Pfeiffer H, Li B (2013) CO2 capture properties of lithium silicates with different ratios of Li2O/SiO2: an ab initio thermodynamic and experimental approach. Phys Chem Chem Phys 15(32):13538–13558

    Article  Google Scholar 

  26. Khomane RB, Sharma BK, Saha S (2006) Reverse microemulsion mediated sol–gel synthesis of lithium silicate nanoparticles under ambient conditions: scope for CO2 sequestration. Chem Eng Sci 61(10):3415–3418

    Article  Google Scholar 

  27. Choi KH, Korai Y, Mochida I (2003) Preparation of CO2 absorbent by spray pyrolysis. Chem Lett 32(10):924–925

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the National Natural Science Foundation of China (Nos. 51372017 and 51172019) and International Thermonuclear Experimental Reactor (ITER) Project of China (No. 2014GB123000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingchun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, M., Zhang, Y., Hong, M. et al. CO2 absorption properties of Ti- and Na-doped porous Li4SiO4 prepared by a sol–gel process. J Mater Sci 50, 4698–4706 (2015). https://doi.org/10.1007/s10853-015-9020-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9020-2

Keywords

Navigation