Advertisement

Journal of Materials Science

, Volume 50, Issue 12, pp 4430–4439 | Cite as

Effects of incoherent nanoinclusions on stress-driven migration of low-angle grain boundaries in nanocomposites

  • I. A. Ovid’ko
  • A. G. SheinermanEmail author
Article

Abstract

Stress-driven migration of grain boundaries (GBs) is theoretically described as a plastic deformation mode in metal matrix nanocomposites containing incoherent reinforcing (ceramic or metallic) nanoinclusions. We considered the exemplary case of low-angle tilt boundaries migrating in nanocrystalline or ultrafine-grained metallic matrixes and analytically calculated the effects of reinforcing nanoinclusions on the GB migration process. In doing so, migrating low-angle tilt boundaries are represented as walls of edge lattice dislocations that cooperatively glide in a metal matrix but cannot penetrate wire nanoinclusions. It is theoretically revealed that the nanoinclusions typically hamper the stress-driven GB migration. At the same time, in the situation with small (ultrafine) nanoinclusions, they cause an anomalous effect enhancing (or, in other terms, decreasing the critical stress for unlimited migration) the stress-driven GB migration in metal–metal and metal–ceramic nanocomposites. The results of our theoretical examination are consistent with the corresponding experimental data reported in the literature.

Keywords

Critical Stress Triple Junction Applied Shear Stress Al2O3 Nanoparticles Disclination Dipole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Russian Science Foundation (Research Project 14-29-00199).

References

  1. 1.
    Koch CC (2007) Structural nanocrystalline materials: an overview. J Mater Sci 42:1403–1414CrossRefGoogle Scholar
  2. 2.
    Kawasaki M, Langdon TG (2007) Principles of superplasticity in ultrafine-grained materials. J Mater Sci 42:1782–1796CrossRefGoogle Scholar
  3. 3.
    Ovid’ko IA (2007) Review on the fracture processes in nanocrystalline materials. J Mater Sci 42:1694–1708CrossRefGoogle Scholar
  4. 4.
    Koch CC, Ovid’ko IA, Seal S, Veprek S (2007) Structural Nanocrystalline Materials: Fundamentals and Applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  5. 5.
    Ovid’ko IA, Sheinerman AG (2009) Enhanced ductility of nanomaterials through optimization of grain boundary sliding and diffusion processes. Acta Mater 57:2217–2228CrossRefGoogle Scholar
  6. 6.
    Pande CS, Cooper KP (2009) Nanomechanics of Hall-Petch relationship in nanocrystalline materials. Progr Mater Sci 54:689–706CrossRefGoogle Scholar
  7. 7.
    Abdolrahim N, Mastorakos IN, Zbib HM (2010) Deformation mechanisms and pseudoelastic behaviors in trilayer composite metal nanowires. Phys Rev B 81:054117CrossRefGoogle Scholar
  8. 8.
    Abdolrahim N, Mastorakos IN, Zbib HM (2012) Precipitate strengthening in nanostructured metallic material composites. Philos Mag Lett 92:597–607CrossRefGoogle Scholar
  9. 9.
    Zhu YT, Liao XZ, Wu X-L (2012) Deformation twinning in nanocrystalline materials. Progr Mater Sci 57:1–62CrossRefGoogle Scholar
  10. 10.
    Estrin Y, Vinogradov A (2013) Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater 61:782–817CrossRefGoogle Scholar
  11. 11.
    Abdolrahim N, Zbib HM, Bahr DF (2014) Multiscale modeling and simulation of deformation in nanoscale metallic multilayer systems. Int J Plasticity 52:33–50CrossRefGoogle Scholar
  12. 12.
    Jin M, Minor AM, Stach EA, Morris JW Jr (2004) Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater 52:5381–5387CrossRefGoogle Scholar
  13. 13.
    Soer WA, De Hosson JTM, Minor AM, Morris JW Jr, Stach EA (2004) Effects of solute Mg on grain boundary and dislocation dynamics during nanoindentation of Al–Mg thin films. Acta Mater 52:5783–5790CrossRefGoogle Scholar
  14. 14.
    Gutkin MY, Ovid’ko IA (2005) Grain boundary migration as rotational deformation mode in nanocrystalline materials. Appl Phys Lett 87:251916CrossRefGoogle Scholar
  15. 15.
    Gianola DS, Van Petegem S, Legros M, Brandstetter S, Van Swygenhoven H, Hemker KJ (2006) Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater 54:2253–2263CrossRefGoogle Scholar
  16. 16.
    Cahn JW, Mishin Y, Suzuki A (2006) Coupling grain boundary motion to shear deformation. Acta Mater 54:4953–4975CrossRefGoogle Scholar
  17. 17.
    Sansoz F, Dupont V (2006) Grain growth behavior at absolute zero during nanocrystalline metal indentation. Appl Phys Lett 89:111901CrossRefGoogle Scholar
  18. 18.
    Gai PL, Zhang K, Weertman J (2007) Electron microscopy study of nanocrystalline copper deformed by a microhardness indenter. Scripta Mater 56:25–28CrossRefGoogle Scholar
  19. 19.
    Pan D, Kuwano S, Fujita T, Chen MW (2007) Ultra-large room-temperature compressive plasticity of a nanocrystalline metal. Nano Lett 7:2108–2111CrossRefGoogle Scholar
  20. 20.
    Ivanov VA, Mishin Y (2008) Dynamics of grain boundary motion coupled to shear deformation: an analytical model and its verification by molecular dynamics. Phys Rev B 78:064106CrossRefGoogle Scholar
  21. 21.
    Ovid’ko IA, Sheinerman AG, Aifantis EC (2008) Stress-driven migration of grain boundaries and fracture processes in nanocrystalline ceramics and metals. Acta Mater 56:2718–2727CrossRefGoogle Scholar
  22. 22.
    Rupert TJ, Gianola DS, Gan Y, Hemker KJ (2009) Experimental observations of stress-driven grain boundary migration. Science 326:1686–1690CrossRefGoogle Scholar
  23. 23.
    Ovid’ko IA, Sheinerman AG, Aifantis EC (2011) Effect of cooperative grain boundary sliding and migration on crack growth in nanocrystalline solids. Acta Mater 59:5023–5031CrossRefGoogle Scholar
  24. 24.
    Bobylev SV, Morozov NF, Ovid’ko IA (2010) Cooperative grain boundary sliding and migration process in nanocrystalline solids. Phys Rev Lett 105:055504CrossRefGoogle Scholar
  25. 25.
    Cheng S, Zhao Y, Wang Y, Li Y, Wang X-L, Liaw PK, Lavernia EJ (2010) Structure modulation driven by cyclic deformation in nanocrystalline NiFe. Phys Rev Lett 104:255501CrossRefGoogle Scholar
  26. 26.
    Molodov DA, Gorkaya T, Gottstein G (2011) Dynamics of grain boundaries under applied mechanical stress. J Mater Sci 46:4318–4326CrossRefGoogle Scholar
  27. 27.
    Mompiou F, Legros M, Caillard D (2011) Direct observation and quantification of grain boundary shear-migration coupling in polycrystalline Al. J Mater Sci 46:4308–4313CrossRefGoogle Scholar
  28. 28.
    Bobylev SV, Ovid’ko IA (2012) Grain boundary rotations in solids. Phys Rev Lett 109:175501CrossRefGoogle Scholar
  29. 29.
    Trautt ZT, Adland A, Karma A, Mishin Y (2012) Coupled motion of asymmetrical tilt grain boundaries: molecular dynamics and phase field crystal simulations. Acta Mater 60:6528–6546CrossRefGoogle Scholar
  30. 30.
    Karma A, Trautt ZT, Mishin Y (2012) Relationship between equilibrium fluctuations and shear-coupled motion of grain boundaries. Phys Rev Lett 109:095501CrossRefGoogle Scholar
  31. 31.
    Yu M, Fang Q, Feng H, Liu Y (2014) Effect of cooperative grain boundary sliding and migration on dislocation emitting from a semi-elliptical blunt crack tip in nanocrystalline solids. Acta Mech 225:2005–2019CrossRefGoogle Scholar
  32. 32.
    Zhao Y, Fang Q, Liu Y (2014) Effect of cooperative nanograin boundary sliding and migration on dislocation emission from a blunt nanocrack tip in nanocrystalline materials. Philos Mag 94:700–730CrossRefGoogle Scholar
  33. 33.
    Chan T, Zhou Y, Brooks I, Palumbo G, Erb U (2014) Localized strain and heat generation during plastic deformation in nanocrystalline Ni and Ni–Fe. J Mater Sci 49:3847–3859CrossRefGoogle Scholar
  34. 34.
    Gregory F, Murakami K, Bacroix B (2014) The influence of microstructural features of individual grains on texture formation by strain-induced boundary migration in non-oriented electrical steels. J Mater Sci 49:1764–1775CrossRefGoogle Scholar
  35. 35.
    Rios PR (1987) Overview no. 62: a theory for grain boundary pinning by particles. Acta Metall 35:2805–2814CrossRefGoogle Scholar
  36. 36.
    Manohar PA, Ferry M, Chandra T (1998) Review: five Decades of the Zener Equation. ISIJ International 38:913–924CrossRefGoogle Scholar
  37. 37.
    Kim G-H, Hong S-M, Lee M-K, Kim S-H, Ioka I, Kim B-S, Kim I-S (2010) Effect of oxide dispersion on dendritic grain growth characteristics of cast aluminum alloy. Mater Trans A 51:1951–1957CrossRefGoogle Scholar
  38. 38.
    Guo JF, Lio J, Sun CN, Maleksaeedi S, Bi G, Tan MJ, Wei J (2014) Effects of nano-Al2O3 particle addition on grain structure evolution and mechanical behaviour of friction-stir-processed Al. Mater Sci Eng, A 602:143–149CrossRefGoogle Scholar
  39. 39.
    Torizuka S, Muramatsu E, Narayana Murty SVS, Nagai K (2006) Microstructure evolution and strength-reduction in area balance of ultrafine-grained steels processed by warm caliber rolling. Scr Mater 55:751–754CrossRefGoogle Scholar
  40. 40.
    Askari H, Zbib H, Sun X (2013) Multiscale modeling of inclusions and precipitation hardening in metal matrix composites: application to advanced high-strength steels. J Nanomech Micromech 3:24–33CrossRefGoogle Scholar
  41. 41.
    Davidson DL (1993) Fatigue and fracture toughness of aluminium alloys reinforced with SiC and alumina particles. Composites 24:248–255CrossRefGoogle Scholar
  42. 42.
    Feng H, Zhou Y, Dechang J, Qingchang M (2004) Microstructure and mechanical properties of in situ TiB reinforced titanium matrix composites based on Ti–FeMo–B prepared by spark plasma sintering. Comp Sci Technol 64:2495–2500CrossRefGoogle Scholar
  43. 43.
    Li J, Fang Q, Liu Y (2013) Crack interaction with a second phase nanoscale circular inclusion in an elastic matrix. Int J Engn Sci 72:89–97CrossRefGoogle Scholar
  44. 44.
    Lin Y, Wen H, Li Y, Wen B, Lavernia EJ (2014) Stress-induced grain growth in an ultra-fine grained Al alloy. Metall Mater Trans B 45:795–810CrossRefGoogle Scholar
  45. 45.
    Lin Y, Xu B, Feng Y, Lavernia EJ (2014) Stress-induced grain growth during high-temperature deformation of nanostructured Al containing nanoscale oxide particles. J Alloys and Compounds 596:79–85CrossRefGoogle Scholar
  46. 46.
    Dám K, Lejček P (2013) In situ TEM investigation of microstructural behavior of superplastic Al–Mg–Sc alloy. Mater Charact 76:69–75CrossRefGoogle Scholar
  47. 47.
    Lin Y, Wen H, Li Y, Wen B, Wei L, Lavernia EJ (2015) An analytical model for stress-induced grain growth in the presence of both second-phase particles and solute segregation at grain boundaries. Acta Mater 82:304–315CrossRefGoogle Scholar
  48. 48.
    Zálezák T, Dlouhý A (2012) 3D discrete dislocation dynamics applied to interactions between dislocation walls and particles. Acta Phys Pol, A 122:450–452Google Scholar
  49. 49.
    Gianola DS, Farkas D, Gamarra M, He M (2012) The role of confinement on stress-driven grain boundary motion in nanocrystalline aluminum thin films. J Appl Phys 112:124313CrossRefGoogle Scholar
  50. 50.
    Tengen TB (2012) The response of the statistics of the cumulative features on grains in nanomaterials to different grain growth phenomena. Int J Mech Mater Des 8:101–112CrossRefGoogle Scholar
  51. 51.
    Aramfard M, Deng C (2014) Influences of triple junctions on stress-assisted grain boundary motion in nanocrystalline materials. Model Simul Mater Sci Eng 22:055012CrossRefGoogle Scholar
  52. 52.
    Sutton AP, Balluffi RW (1995) Interfaces in Crystalline Materials. Clarendon, Oxford, pp 70–96Google Scholar
  53. 53.
    Bollmann W (1984) Triple lines in polycrystalline aggregates as disclinations. Philos Mag A 49:73–79CrossRefGoogle Scholar
  54. 54.
    Bollmann W (1988) Triple-line disclinations: representations, continuity and reactions. Philos Mag A 57:637–649CrossRefGoogle Scholar
  55. 55.
    Ovid’ko IA, Sheinerman AG (2014) Stress-driven migration of low-angle tilt boundaries in nanocrystalline and ultrafine-grained metals containing coherent nanoinclusions. Rev Adv Mater Sci 39:99–107Google Scholar
  56. 56.
    Bobylev SV, Gutkin MY, Ovid’ko IA (2004) Decay of low-angle tilt boundaries in deformed nanocrystalline materials. J Phys D 37:269–272CrossRefGoogle Scholar
  57. 57.
    Bobylev SV, Gutkin MY, Ovid’ko IA (2004) Transformations of grain boundaries in deformed nanocrystalline materials. Acta Mater 52:3793–3805CrossRefGoogle Scholar
  58. 58.
    Rzhavtsev EA, Gutkin MY (2015) The dynamics of dislocation wall generation in metals and alloys under shock loading. Scripta Mater 100:102–105CrossRefGoogle Scholar
  59. 59.
    Bobylev SV, Ovid’ko IA (2015) Stress-driven migration of deformation-distorted grain boundaries in nanomaterials. Acta Mater 88:260–270CrossRefGoogle Scholar
  60. 60.
    Bulatov V, Cai W (2006) Computer Simulations of Dislocations. Oxford University Press, OxfordGoogle Scholar
  61. 61.
    Groh S, Zbib M (2009) Advances in discrete dislocation dynamics and multiscale modeling. J Ing Mater Tech 131:041209CrossRefGoogle Scholar
  62. 62.
    Arsenlis T, Bulatov VV, Cai W, Hommes G, Rhee M, Tang M (2011) Documentation of ParaDiS V2. 5. 1Google Scholar
  63. 63.
    Zbib HM (2012) Introduction to discrete dislocation dynamics. In: Sansour C, Skatulla S (eds) CISM Cources and Lectures, vol 537. Springer, New York, pp 289–317 Generalized Continua and Dislocation TheoryGoogle Scholar
  64. 64.
    Kocks UF, Argon AS, Ashby MF (1975) Thermodynamics and kinetics of slip. Prog Mater Sci 19:1–288CrossRefGoogle Scholar
  65. 65.
    Hirth JP, Lothe J (1982) Theory of Dislocations. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Research Laboratory for Mechanics of New NanomaterialsSt. Petersburg State Polytechnical UniversitySt. PetersburgRussia
  2. 2.Department of Mathematics and MechanicsSt. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations