Journal of Materials Science

, Volume 50, Issue 12, pp 4422–4429 | Cite as

Mechanical properties of ultrafine-grained AlZnMg(Cu)-alloys AA7020 and AA7075 processed by accumulative roll bonding

  • M. RuppertEmail author
  • M. Strebl
  • H. W. Höppel
  • M. Göken
Original Paper


Ultrafine-grained AA7020 (AlZnMg) and AA7075 (AlZnMgCu) were produced by accumulative roll bonding (ARB) with up to 6 cycles. Different pre-heating treatments and their effect on the mechanical performance of the materials were investigated by means of hardness measurements and uniaxial tensile testing. It was found for AA7020 that by pre-heating at 230 °C for 2.5 min prior to each rolling step, an UTS of 550 MPa can be achieved, which is 51 % higher compared to the peak-aged T6 reference. For AA7075, pre-heating at 280 °C for 2.5 min leads to a very high UTS of 720 MPa after four ARB passes. A negative strain rate sensitivity was found for both alloys, which shifts toward zero with increasing number of ARB cycles. Post-ARB heat treatment was performed in order to overcome the reduced ductility after ARB. This leads to an enhanced strain hardening capacity after 4 cycles, resulting in an increase of the uniform elongation from 1.4 to 2.0 % for AA7020 and from 0.9 to 2.1 % for AA7075.


AA7075 Severe Plastic Deformation Strain Rate Sensitivity Accumulative Roll Bonding Dynamic Strain Aging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the financial support of the German Research Council (DFG) und project GO 741/19-1 and the Cluster of Excellence “Engineering of Advanced Materials” Erlangen-Nürnberg which is funded within the framework of its “Excellence Initiative.” Furthermore, the authors would especially like to thank Werner Fragner from AMAG Austria Metall AG for providing the sheet material.


  1. 1.
    Zhao YH, Liao XZ, Zhu YT, Valiev RZ (2004) Enhanced mechanical properties in ultrafine grained 7075 Al alloy. J Mater Res 20:288–291. doi: 10.1557/JMR.2005.0057 CrossRefGoogle Scholar
  2. 2.
    Saito Y, Tsuji N, Utsunomiya H, Sakai T, Hong RG (1998) Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scr Mater 39:1221–1227. doi: 10.1016/S1359-6462(98)00302-9 CrossRefGoogle Scholar
  3. 3.
    Tsuji N, Saito Y, Lee SH, Minamino Y (2003) ARB (accumulative roll-bonding) and other new techniques to produce bulk ultrafine grained materials. Adv Eng Mater 5:338–344. doi: 10.1002/adem.200310077 CrossRefGoogle Scholar
  4. 4.
    Tsuji N, Ito Y, Nakashima H, Yoshida F, Minamino Y (2002) Change in microstructure during annealing of ultrafine grained aluminum produced by ARB. Mater Sci Forum 396–402:423–428. doi: 10.4028/ CrossRefGoogle Scholar
  5. 5.
    Ruppert M, Böhm W, Nguyen H, Höppel HW, Merklein M, Göken M (2013) Influence of upscaling accumulative roll bonding on the homogeneity and mechanical properties of AA1050A. J Mater Sci 48:8377–8385. doi: 10.1007/s10853-013-7648-3 CrossRefGoogle Scholar
  6. 6.
    Lowe TC, Valiev RZ (2000) Producing nanoscale microstructures through severe plastic deformation. JOM 52:27–28. doi: 10.1007/s11837-000-0127-8 CrossRefGoogle Scholar
  7. 7.
    Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) Paradox of strength and ductility in metals processed by severe plastic deformation. J Mater Res 17:5–8. doi: 10.1557/JMR.2002.0002 CrossRefGoogle Scholar
  8. 8.
    Höppel HW, Valiev RZ (2002) On the possibilities to enhance the fatigue properties of ultrafine-grained metals. Z Metall 93:641–648. doi: 10.3139/146.020641 CrossRefGoogle Scholar
  9. 9.
    Höppel HW, May J, Göken M (2004) Enhanced strength and ductility in ultrafine-grained aluminium produced by accumulative roll bonding. Adv Eng Mater 6:781–784. doi: 10.1002/adem.200306582 CrossRefGoogle Scholar
  10. 10.
    May J, Höppel HW, Göken M (2005) Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation. Scr. Mater. 53:189–194. doi: 10.1016/j.scriptamat.2005.03.043 CrossRefGoogle Scholar
  11. 11.
    Tsuji N, Saito Y, Utsunomiya H, Tanigawa S (1999) Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process. Scr Mater 40:795–800. doi: 10.1016/S1359-6462(99)00015-9 CrossRefGoogle Scholar
  12. 12.
    Wei Q (2007) Strain rate effects in the ultrafine grain and nanocrystalline regimes—influence on some constitutive responses. J Mater Sci 42:1709–1727. doi: 10.1007/s10853-006-0700-9 CrossRefGoogle Scholar
  13. 13.
    Roy S, Nataraj BR, Suwas S, Kumar S, Chattopadhyay K (2012) Accumulative roll bonding of aluminum alloys 2219/5086 laminates: Microstructural evolution and tensile properties. Mater Des 36:529–539. doi: 10.1016/j.matdes.2011.11.015 CrossRefGoogle Scholar
  14. 14.
    Roy S, Nataraj BR, Suwas S, Kumar S, Chattopadhyay K (2012) Microstructure and texture evolution during accumulative roll bonding of aluminium alloys AA2219/AA5086 composite laminates. J Mater Sci 47:6402–6419. doi: 10.1007/s10853-012-6567-z CrossRefGoogle Scholar
  15. 15.
    Tsuji N, Iwata T, Sato M, Fujimoto S, Minamino Y (2004) Aging behavior of ultrafine grained Al–2 wt%Cu alloy severely deformed by accumulative roll bonding. Sci Technol Adv Mater 5:173–180. doi: 10.1016/j.stam.2003.10.019 CrossRefGoogle Scholar
  16. 16.
    Hausöl T, Höppel HW, Göken M (2010) Tailoring materials properties of UFG aluminium alloys by accumulative roll bonded sandwich-like sheets. J Mater Sci 45:4733–4738. doi: 10.1007/s10853-010-4678-y CrossRefGoogle Scholar
  17. 17.
    Topic I, Höppel HW, Göken M (2007) Deformation behaviour, microstructure and processing of ARB aluminium alloy AA6016. Int J Mater Res 98:320–324. doi: 10.3139/146.101469 CrossRefGoogle Scholar
  18. 18.
    Lee SH, Saito Y, Sakai T, Utsunomiya H (2002) Microstructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bonding. Mater Sci Eng A 325:228–235. doi: 10.1016/S0921-5093(01)01416-2 CrossRefGoogle Scholar
  19. 19.
    Hidalgo P, Cepeda-Jiménez CM, Ruano OA, Carreño F (2010) Influence of the processing temperature on the microstructure, texture, and hardness of the 7075 aluminum alloy fabricated by accumulative roll bonding. Metall Mater Trans A 41:758–767. doi: 10.1007/s11661-009-0138-1 CrossRefGoogle Scholar
  20. 20.
    Hidalgo P, Cepeda-Jiménez CM, Ruano OA, Carreño F (2012) Effect of warm accumulative roll bonding on the evolution of microstructure, texture and creep properties in the 7075 aluminium alloy. Mater Sci Eng A 556:287–294. doi: 10.1016/j.msea.2012.06.089 CrossRefGoogle Scholar
  21. 21.
    Hidalgo P, Cepeda-Jiménez CM, Orozoco-Caballero A, Ruano OA, Carreño F (2014) Evolution of the microstructure, texture and creep properties of the 7075 aluminium alloy during hot accumulative roll bonding. Mater Sci Eng A 606:434–442. doi: 10.1016/j.msea.2014.03.105 CrossRefGoogle Scholar
  22. 22.
    Hidalgo P, Cepeda-Jiménez CM, Orozoco-Caballero A, Ruano OA, Carreño F (2014) Role of particles on microstructure and mechanical properties of the severely processed 7075 aluminium alloy. J Mater Sci 49:833–841. doi: 10.1007/s10853-013-7767-x CrossRefGoogle Scholar
  23. 23.
    Li L, Nagai K, Yin F (2008) Progress in cold roll bonding of metals. Sci Technol Adv Mater 9:1–11. doi: 10.1088/1468-6996/9/2/023001 Google Scholar
  24. 24.
    Tylecote RF, Howd D, Furmidge JE (1958) The influence of surface films on the pressure welding of metals. Br Weld J 5:21–38Google Scholar
  25. 25.
    Hausöl T, Höppel HW, Göken M (2011) Microstructure and mechanical properties of accumulative roll bonded AA6014/5754 aluminium laminates. Mater Sci Forum 667–669:217–222. doi: 10.4028/ Google Scholar
  26. 26.
    Vevecka-Priftaj A, Böhner A, May J, Höppel HW, Göken M (2008) Strain rate sensitivity of ultrafine grained aluminium alloy AA6061. Mater Sci Forum 584–586:741–747. doi: 10.4028/ CrossRefGoogle Scholar
  27. 27.
    Xing ZP, Kang SB, Kim HW (2002) Structure and properties of AA3003 alloy produced by accumulative roll bonding process. J Mater Sci 37:717–722. doi: 10.1023/A:1013879528697 CrossRefGoogle Scholar
  28. 28.
    Wei KX, Wei W, Du QB, Hu J (2009) Microstructure and tensile properties of Al–Mn alloy processed by accumulative roll bonding. Mater Sci Eng A 525:55. doi: 10.1016/j.msea.2009.06.028 CrossRefGoogle Scholar
  29. 29.
    Kim HW, Kang SB, Tsuji N, Minamino Y (2005) Elongation increase in ultrafine-grained Al–Fe–Si alloy sheets. Acta Mater 53:1737–1749. doi: 10.1016/j.actamat.2004.12.022 CrossRefGoogle Scholar
  30. 30.
    Xing ZP, Kang SB, Kim HW (2002) Microstructural evolution and mechanical properties of the AA8011 alloy during the accumulative roll-bonding process. Metall Mater Trans A 33:1521–1530. doi: 10.1007/s11661-002-0074-9 CrossRefGoogle Scholar
  31. 31.
    Hart EW (1967) Theory of the tensile test. Acta Metall 15:351–355. doi: 10.1016/0001-6160(67)90211-8 CrossRefGoogle Scholar
  32. 32.
    Dorward RC, Hasse KR (1995) Strain rate effects on tensile deformation of 2024-O and 7075-O aluminum alloy sheet. J Mater Eng Perform 4:216–220. doi: 10.1007/BF02664116 CrossRefGoogle Scholar
  33. 33.
    Huang X, Tsuji N, Hansen N, Minamino Y (2003) Microstructural evolution during accumulative roll-bonding of commercial purity aluminum. Mater Sci Eng A 340:265–271. doi: 10.1016/S0921-5093(02)00182-X CrossRefGoogle Scholar
  34. 34.
    Blum W, Zeng XH (2009) A simple dislocation model of deformation resistance of ultrafine-grained materials explaining Hall–Petch strengthening and enhanced strain rate sensitivity. Acta Mater 57:1966–1974. doi: 10.1016/j.actamat.2008.12.041 CrossRefGoogle Scholar
  35. 35.
    Li YZ, Zeng XH, Blum W (2004) Transition from strengthening to softening by grain boundaries in ultrafine-grained Cu. Acta Mater 52:5009–5018. doi: 10.1016/j.actamat.2004.07.003 CrossRefGoogle Scholar
  36. 36.
    Penning P (1972) Mathematics of the Portevin–Le Chatelier effect. Acta Metall 20:1169–1175. doi: 10.1016/0001-6160(72)90165-4 CrossRefGoogle Scholar
  37. 37.
    Kapoor R, Gupta C, Sharma G, Chakravartty JK (2005) Deformation behavior of Al–1.5Mg processed using the equal channel angular pressing technique. Scr Mater 53:1389–1393. doi: 10.1016/j.scriptamat.2005.08.026 CrossRefGoogle Scholar
  38. 38.
    Král R, Lukác Janecek M (1996) Critical conditions for Portevin–Le Châtelier instabilities in Al–4.8%Mg and Al–2.57%Mg alloys. Mater Sci Forum 217–222:1025–1030. doi: 10.4028/ CrossRefGoogle Scholar
  39. 39.
    Picu RC, Vincze G, Ozturk F, Gracio JJ, Barlat F, Maniatty AM (2005) Strain rate sensitivity of the commercial aluminum alloy AA5182-O. Mater Sci Eng A 390:334. doi: 10.1016/j.msea.2004.08.029 CrossRefGoogle Scholar
  40. 40.
    Fritsch S, Scholze M, Wagner MFX (2012) Cryogenic forming of AA7075 by equal-channel angular pressing. Materialwiss Werkstofftech 43:561–566. doi: 10.1002/mawe.201200001 CrossRefGoogle Scholar
  41. 41.
    Hockauf M, Meyer LW, Zillmann B, Hietschold M, Schulze S, Krüger L (2009) Simultaneous improvement of strength and ductility of Al–Mg–Si alloys by combining equal-channel angular extrusion with subsequent high-temperature short-time aging. Mater Sci Eng A 503:167–171. doi: 10.1016/j.msea.2008.02.051 CrossRefGoogle Scholar
  42. 42.
    Vaidyanath LR, Nicholas MG, Milner DR (1958) Pressure welding by rolling. Br Weld J 6:13–28Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • M. Ruppert
    • 1
    Email author
  • M. Strebl
    • 1
  • H. W. Höppel
    • 1
  • M. Göken
    • 1
  1. 1.Department of Materials Science and Engineering, Institute I: General Materials PropertiesFriedrich-Alexander-University of Erlangen-NürnbergErlangenGermany

Personalised recommendations