Skip to main content
Log in

Effect of double aluminium doping on the structure, stability and electronic properties of small gold clusters

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, we have used density functional theory with PW91PW91 functional to analyse the structures, relative stabilities and electronic properties of small bimetallic neutral and charged Au n Al2 (n = 1–5) clusters. The results reveal that doping with two Al atoms can significantly affects the geometries of the ground-state Au n+2 (n = 1–5) clusters. The relative stabilities of the clusters were investigated on the basis of average binding energies, fragmentation energies and second-order difference of energies. The electronic properties are calculated using vertical ionization potential, vertical electron affinity values and these parameters show even–odd alternation phenomenon. The nature of bonding interaction is also investigated for the first time in Al-doped clusters using Bader’s quantum theory of atoms in molecules which indicates the presence of covalent bonding in the studied clusters. The population analysis reveals the transfer of electrons from Al to Au atoms which is responsible for the enhance stability of doped clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Eachus RS, Marchetti AP, Muenter AA (1999) The photolysis of silver halide imaging materials. Annu Rev Phys Chem 50:117–144

    Article  Google Scholar 

  2. Scaffardi LB, Pellegri N, Ode Sanctis, Tocho JO (2005) Sizing gold nanoparticles by optical extinction spectroscopy. Nanotechnology 16:158–163

    Article  Google Scholar 

  3. Torres MB, Fernández EM, Balbás LC (2008) Theoretical study of oxygen adsorption on pure Au +n+1 and doped MAu +n cationic gold clusters for M = Ti, Fe and n = 3–7. J Phys Chem A 112:6678–6689

    Article  Google Scholar 

  4. Autschbach J, Hess BA, Johansson MP, Neugebauer J, Patzschke M, Pyykkö P, Reiher M, Sundholm D (2004) Properties of WAu12. Phys Chem Chem Phys 6:11–22

    Article  Google Scholar 

  5. Lopez N, Norskov JK (2002) Catalytic CO oxidation by a gold nanoparticle: a density functional study. J Am Chem Soc 124:11262–11263

    Article  Google Scholar 

  6. Haruta M, Kobayashi T, Samo H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem Lett 2:405–408

    Article  Google Scholar 

  7. Deka RC, Bhattacharjee D, Chakrabartty AK, Mishra BK (2014) Catalytic oxidation of NO by Au2 dimers: a DFT study. RSC Adv 4:5399–5404

    Article  Google Scholar 

  8. Chrétien SC, Buratto SK, Metiu H (2007) Catalysis by very small Au clusters. Curr Opin Solid State Mater Sci 11:62–75

    Article  Google Scholar 

  9. Werner J (1999) Chemical aspects of the use of gold clusters in structural biology. J Struct Biol 127:106–112

    Article  Google Scholar 

  10. Gaudry M, Lerme J, Cottancin E, Pellarin M, Vialle JL, Broyer M, Prevel B, Treilleux M, Melinon P (2001) Optical properties of (AuxAg1−x)n clusters embedded in alumina: evolution with size and stoichiometry. Phys Rev B 64:085407

    Article  Google Scholar 

  11. Manzoor D, Krishnamurty S, Pal S (2014) Effect of silicon doping on the reactivity and catalytic activity of gold clusters. J Phys Chem C 118:7501–7507

    Article  Google Scholar 

  12. Liu P, Song K, Zhang D, Liu C (2012) A comparative theoretical study of the catalytic activities of Au2 and AuAg dimers for CO oxidation. J Mol Model 18:1809–1818

    Article  Google Scholar 

  13. Deka A, Deka RC (2008) Structural and electronic properties of stable Aun (n = 2–13) clusters: a density functional study. J Mol Struct (Theochem) 870:83–93

    Article  Google Scholar 

  14. Viswanathan M, Sankaran B (2006) A DFT study of the electronic property of gold nanoclusters (Aux, x = 1–12 atoms). Bull Catal Soc India 5:26–32

    Google Scholar 

  15. Shao P, Kuang XY, Zhao YR, Li YF, Wang SJ (2012) Equilibrium geometries, stabilities, and electronic properties of the cationic AunBe+ (n = 1–8) clusters: comparison with pure gold clusters. J Mol Model 18:3553–3562

    Article  Google Scholar 

  16. Shao N, Huang W, Mei WN, Wang LS, Wu Q, Zeng XC (2014) Structural evolution of medium-sized gold clusters Au n (n = 36, 37, 38): appearance of bulk-like face centered cubic fragment. J Phys Chem C 118:6887–6892

    Article  Google Scholar 

  17. Pal R, Wang LM, Huang W, Wang LS, Zeng XC (2009) Structural evolution of doped gold clusters: MAu x (M = Si, Ge, Sn; x = 5–8). J Am Chem Soc 131:3396

    Article  Google Scholar 

  18. Zhang M, Feng XJ, Zhao LX, He LM, Luo YH (2010) Density-functional investigation of 3d, 4d, 5d impurity doped Au6 clusters. Chin Phys B 19:043103

    Article  Google Scholar 

  19. Lu P, Liu GH, Kuang XY (2014) Probing the structural and electronic properties of bimetallic chromium–gold clusters CrmAun (m + n ≤ 6): comparison with pure chromium and gold clusters. J Mol Model 20:2385

    Article  Google Scholar 

  20. Tafoughalt MA, Sarmah M (2012) Density functional investigation of structural and electronic properties of small bimetallic silver–gold clusters. Phys B 407:2014–2024

    Article  Google Scholar 

  21. Soto JR, Molinaa B, Castro JJ (2014) Nonadiabatic structure instability of planar hexagonal gold cluster cation Au7 and its spectral signature. RSC Adv 4:8157–8164

    Article  Google Scholar 

  22. Li YF, Kuang XY, Wang SJ, Zhao YR (2010) Geometries, stabilities, and electronic properties of small anion Mg-doped gold clusters: a density functional theory study. J Phys Chem A 114:11691–11698

    Article  Google Scholar 

  23. Wang HQ, Kuang XY, Li HF (2010) Density functional study of structural and electronic properties of bimetallic copper–gold clusters: comparison with pure and doped gold clusters. Phys Chem Chem Phys 12:5156–5165

    Article  Google Scholar 

  24. Koyasu K, Naono Y, Akutsu M, Mitsui M, Nakajima A (2006) Photoelectron spectroscopy of binary Au cluster anions with a doped metal atom: AunM (n = 2–7), M = Pd, Ni, Zn, Cu, and Mg. Chem Phys Lett 422:62–66

    Article  Google Scholar 

  25. Guo JJ, Yang JX, Die D (2008) Ab initio study of small AunY2 (n = 1–4) clusters. Phys B 403:4033–4037

    Article  Google Scholar 

  26. Bhattacharjee D, Mishra BK, Chakrabartty AK, Deka RC (2014) DFT and QTAIM studies on structure and stability of beryllium doped gold clusters. Comput Theor Chem 1034:61–72

    Article  Google Scholar 

  27. Bouwen W, Vanhoutte F, Despa F, Bouckaert S, Neukermans S, Kuhn LT, Weidele H, Lievens P, Silverans RE (1999) Stability effects of AunXm (X = Cu, Al, Y, In) clusters. Chem Phys Lett 314:227–233

    Article  Google Scholar 

  28. Heinebrodt M, Malinowski N, Tast F, Branz W, Billas IML, Martin TP (1999) Bonding character of bimetallic clusters AuX (X = Al, In, Cs). J Chem Phys 110:9915–9921

    Article  Google Scholar 

  29. Wang CJ, Kuang XY, Wang HQ, Li HF, Gu JB, Liu J (2012) Density-functional investigation of the geometries, stabilities, electronic, and magnetic properties of gold cluster anions doped with aluminum: AunAl (1 ≤ n ≤ 8). Comput Theor Chem 1002:31–36

    Article  Google Scholar 

  30. Zhao LX, Feng XJ, Cao TT, Liang X, Luo YH (2009) Density functional study of Al doped Au clusters. Chin Phys B 18:2709–2718

    Article  Google Scholar 

  31. Majumder C, Kandalam AK, Jena P (2006) Structure and bonding of Au5M (M = Na, Mg, Al, Si, P, and S) clusters. Phys Rev B 74:205437

    Article  Google Scholar 

  32. Accelrys Material Studio 7.0

  33. Rappé AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035

    Article  Google Scholar 

  34. Antonello S, Arrigoni G, Dainese T, Nardi MD, Parisio G, Perotti L, René A, Venzo A, Maran F (2014) Electron transfer through 3D monolayers on Au25 clusters. ACS Nano 8:2788–2795

    Article  Google Scholar 

  35. Huber SE, Warakulwit C, Limtrakul J, Tsukudad T, Probst M (2012) Thermal stabilization of thin gold nanowires by surfactant-coating: a molecular dynamics study. Nanoscale 4:585–590

    Article  Google Scholar 

  36. Perdew P, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671

    Article  Google Scholar 

  37. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    Article  Google Scholar 

  38. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310

    Article  Google Scholar 

  39. Xie H, Li X, Zhao L, Qin Z, Wu X, Tang Z, Xing X (2012) Photoelectron imaging and theoretical calculations of bimetallic clusters: AgCu, AgCu (−)2 , and Ag2Cu. J Phys Chem A 116:10365–10370

    Article  Google Scholar 

  40. Zhou J, Li ZH, Wang WN, Fan KN (2006) Density functional study of the interaction of carbon monoxide with small neutral and charged silver clusters. J Phys Chem A 110:7167–7172

    Article  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell K, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision B.01. Gaussian Inc, Wallingford

    Google Scholar 

  42. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  43. Bader RFW (1998) A bond path: a universal indicator of bonded interactions. J Phys Chem A 102:7314–7323

    Article  Google Scholar 

  44. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893

    Article  Google Scholar 

  45. Keith TA (2013) AIMAll (version 13.02.26). TK Gristmill Software, Overland Park (aim.tkgristmill.com)

    Google Scholar 

  46. Li YF, Mao AJ, Li Y, Kuang XY (2012) Density functional study on size-dependent structures, stabilities, electronic and magnetic properties of AunM (M = Al and Si, n = 1–9) clusters: comparison with pure gold clusters. J Mol Model 18:3061–3072

    Article  Google Scholar 

  47. Bhattacharjee D, Mishra BK, Deka RC (2014) A DFT study on structure, stabilities and electronic properties of double magnesium doped gold clusters. RSC Adv 4:56571–56581

    Article  Google Scholar 

  48. Hakkinen H, Yoon B, Landman U, Li X, Zhai HJ, Wang LS (2003) On the electronic and atomic structures of small Au N (N = 4–14) clusters: a photoelectron spectroscopy and density-functional study. J Phys Chem A 107:6168–6175

    Article  Google Scholar 

  49. Cheeseman MA, Eyler JR (1992) Ionization potentials and reactivity of coinage metal clusters. J Phys Chem 96:1082–1087

    Article  Google Scholar 

  50. Farrugia LJ, Evans C, Tegel MJ (2006) Chemical bonds without “Chemical Bonding”? A combined experimental and theoretical charge density study on an iron trimethylenemethane complex. J Phys Chem A 110:7952–7961

    Article  Google Scholar 

  51. Cremer D, Kraka E (1984) Chemical bonds without bonding electron density-does the difference electron-density analysis suffice for a description of the chemical bond? Angew Chem Int Ed 23:627–628

    Article  Google Scholar 

  52. Macchi P, Sironi A (2003) Chemical bonding in transition metal carbonyl clusters: complementary analysis of theoretical and experimental electron densities. Coord Chem Rev 238–239:383–412

    Article  Google Scholar 

Download references

Acknowledgements

The work is funded by the Department of Science and Technology, New Delhi in the form of a research project (SR/NM/NS-1023/2011-G). One of the authors, D.B. is thankful to CSIR, New Delhi for providing Senior Research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Ch. Deka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 286 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, D., Mishra, B.K. & Deka, R.C. Effect of double aluminium doping on the structure, stability and electronic properties of small gold clusters. J Mater Sci 50, 4586–4599 (2015). https://doi.org/10.1007/s10853-015-9007-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9007-z

Keywords

Navigation