Liu Y, Su G, Zhang B, Jiang G, Yan B (2011) Nanoparticle-based strategies for detection and remediation of environmental pollutants. Analyst 136:872–877
Article
Google Scholar
Szygul A, Guibal E, Palacin MA, Ruiz M, Sastre AM (2009) Removal of an anionic dye (Acid Blue 92) by coagulation–flocculation using chitosan. J Environ Manag 90:2979–2986
Article
Google Scholar
Du J, Lai X, Yang N, Zhai J, Kisailus D, Su F, Wang D (2011) Hierarchically ordered macro—mesoporous TiO2—graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities. ACS Nano 5:590–596
Article
Google Scholar
Liu R, Liu Y, Liu C, Luo S, Teng Y, Yang L, Yang R, Cai Q (2011) Enhanced photoelectrocatalytic degradation of 2,4-dichlorophenoxyacetic acid by CuInS2 nanoparticles deposition onto TiO2 nanotube arrays. J Alloys Compd 509:2434–2440
Article
Google Scholar
Cun W, Xinming W, Jincai Z, Bixian M, Guoying S, Ping’an P, Jiamo F (2002) Synthesis, characterization and photocatalytic property of nano-sized Zn2SnO4. J Mater Sci 37:2989–2996. doi:10.1023/A:1016077216172
Article
Google Scholar
Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874. doi:10.1007/s10853-010-5113-0
Article
Google Scholar
Zhou W, Liu H, Wang J, Liu D, Du G, Cui J (2010) Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity. Appl Mater Interfaces 2:2385–2392
Article
Google Scholar
Ksibi M, Rossignol S, Tatibouet JM, Trapalis C (2008) Synthesis and solid characterization of nitrogen and sulfur doped TiO2 photocatalysts active under near visible light. Mater Lett 62:4204–4206
Article
Google Scholar
Diaz FJ, Chow AT, O’Geen AT, Dahlgren RA, Wong PK (2009) Effect of constructed wetlands receiving agricultural return flows on disinfection byproduct precursors. Water Res 43:2750–2760
Article
Google Scholar
Lyu LM, Huang MH (2011) Investigation of relative stability of different facets of Ag2O nanocrystals through face-selective etching. J Phys Chem C 115:17768–17773
Article
Google Scholar
Wang X, Li S, Yu H, Yu J, Liu S (2011) Ag2O as a new visible-light photocatalyst: self-stability and high photocatalytic activity. Chem Eur J 17:7777–7780
Article
Google Scholar
Tudela D (2008) Silver (II) Oxide or silver (I, III) oxide? J Chem Educ 85:863–865
Article
Google Scholar
Carson CG, Hardcastle K, Schwartz J, Liu X, Hoffmann C, Gerhardt RA, Tannenbaum R (2009) Synthesis and structure characterization of copper terephthalate metal–organic frameworks, Eur J Inorg Chem 2338–2343
Mori W, Inoue F, Yoshida K, Nakayama H, Takamizawa S, Kishita M (1997) Synthesis of new adsorbent copper(II) terephthalate. Chem Lett 26:1219–1220
Article
Google Scholar
Dhakshinamoorthy A, Garcia H (2012) Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chem Soc Rev 41:5262–5284
Article
Google Scholar
Petit C, Bandosz TJ (2009) MOF–graphite oxide composites: combining the uniqueness of graphene layers and metal-organic frameworks. Adv Mater 21:4753–4757
Google Scholar
Dhakshinamoorthy A, Alvaro M, Garcia H (2011) Metal–organic frameworks as heterogeneous catalysts for oxidation reactions. Catal Sci Technol 1:856–867
Article
Google Scholar
Gascon J, Hernández-Alonso MD, Almeida AR et al (2008) Isoreticular MOFs as efficient photocatalysts with tunable band gap: an operando FTIR study of the photoinduced oxidation of propylene. ChemSusChem 1:981–983
Article
Google Scholar
Sarkar D, Ghosh CK, Mukherjee S, Chattopadhyay KK (2013) Three dimensional Ag2O/TiO2 type-II (p—n) nanoheterojunctions for superior photocatalytic activity. Appl Mater Interfaces 5:331–337
Article
Google Scholar
Wang G, Ma X, Huang B, Cheng H, Wang Z, Zhan J, Qin X, Zhang X, Dai Y (2012) Controlled synthesis of Ag2O microcrystals with facet-dependent photocatalytic activities. J Mater Chem 22:21189–21194
Article
Google Scholar
Elahifard MR, Rahimnejad S, Haghighi S, Gholami MR (2007) Apatite-coated Ag/AgBr/TiO2 visible-light photocatalyst for destruction of bacteria. J Am Chem Soc 129:9552–9553
Article
Google Scholar
Corma A, Garcı´a H, Llabre´s i Xamena FX (2010) Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 110:4606–4655
Article
Google Scholar
Wang D, Choi D, Li J, Yang Z, Nie Z et al (2009) Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li–ion insertion. ACS Nano 3:907–914
Article
Google Scholar
Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3:2653–2659
Article
Google Scholar
Bai X, Zong R, Li C, Liu D, Liu Y, Zhu Y (2014) Enhancement of visible photocatalytic activity via Ag@C3N4 core–shell plasmonic composite. J Appl Catal 147:82–91
Article
Google Scholar
Mohaghegh N, Tasviri M, Rahimi E, Gholami MR (2014) Nano sized ZnO composites: preparation, characterization and application as photocatalysts for degradation of AB92 azo dye. Mater Sci Semicond Process 21:167–179
Article
Google Scholar
Zhang H, Xu P, Du G, Chen Z, Oh K, Pan D, Jiao Z (2011) A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange. Nano Res 4:274–283
Article
Google Scholar
Stankovich S, Dikin DA, Piner RD, Kohlhaas KA et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565
Article
Google Scholar
Chen LC, Ho YC, Guo WS, Huang CM, Pan TC (2009) Enhanced visible light-induced photoelectrocatalytic degradation of phenol by carbon nanotube-doped TiO2 electrodes. Electrochim Acta 54:3884–3891
Article
Google Scholar
Banerjee S, Maity AK, Chakravorty D (2000) Quantum confinement effect in heat treated silver oxide nanoparticles. J Appl Phys 87:8541–8544
Article
Google Scholar
Yen CW, Mahmoud MA, El-Sayed MA (2009) Photocatalysis in gold nanocage nanoreactors. J Phys Chem A 113:4340–4345
Article
Google Scholar
Bahr Y, Mahmoud MA (2007) Photocatalytic degradation of methyl orange by gold silver nano-core/silica nano-shell. J Phys Chem Solids 68:413–419
Article
Google Scholar
Fan W, Lai Q, Zhang Q, Wang Y (2011) Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution. J Phys Chem C 115:10694–10701
Article
Google Scholar