Skip to main content

Advertisement

Log in

A two-step reduction method for synthesizing graphene nanocomposites with a low loading of well-dispersed platinum nanoparticles for use as counter electrodes in dye-sensitized solar cells

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Low Pt-loaded graphene nanocomposites were prepared using a two-step reduction process. Graphene dispersion was first prepared from graphene oxide using hydrazine hydrate as a reducing agent. Pt-reduced graphene oxide composites were then synthesized in the aqueous graphene dispersion at 90 °C without the need for another reductant. Pt/graphene composite films were then deposited on fluorine-doped tin oxide substrates using a simple drop-casting method at room temperature and subsequently used as counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). Cyclic voltammetry and electrical impedance analysis show that the composite electrodes have high electrocatalytic activity toward iodide/triiodide reduction. The energy conversion efficiency of the Pt/graphene CE-based DSSC was found to be 1.9 % lower than that of cells with a Pt-based CE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee K, Lin L, Chen C, Suryanarayanan V, Wu C (2014) Preparation of high transmittance platinum counter electrode at an ambient temperature for flexible dye-sensitized solar cells. Electrochim Acta 135:578–584. doi:10.1016/j.electacta.2014.05.004

    Article  Google Scholar 

  2. Tang Z, Wu J, Zheng M, Huo J, Lan Z (2013) A microporous platinum counter electrode used in dye-sensitized solar cells. Nano Energy 2(5):622–627. doi:10.1016/j.nanoen.2013.07.014

    Article  Google Scholar 

  3. Cho C, Wu H, Lin C (2013) Impacts of sputter-deposited platinum thickness on the performance of dye-sensitized solar cells. Electrochim Acta 107:488–493. doi:10.1016/j.electacta.2013.06.023

    Article  Google Scholar 

  4. Wu J, Tang Z, Huang Y, Huang M, Yu H, Lin J (2014) A dye-sensitized solar cell based on platinum nanotube counter electrode with efficiency of 9.05 %. J Power Sources 257:84–89. doi:10.1016/j.jpowsour.2014.01.090

    Article  Google Scholar 

  5. Lee H, Horn MW (2013) Sculptured platinum nanowire counter electrodes for dye-sensitized solar cells. Thin Solid Films 540:208–211. doi:10.1016/j.tsf.2013.04.079

    Article  Google Scholar 

  6. Wang C, Chen J, Huang K, Chen H, Wang Y, Hsu C, Vittal R, Lin J, Ho K (2013) A platinum film with organized pores for the counter electrode in dye-sensitized solar cells. J Power Sources 239:496–499. doi:10.1016/j.jpowsour.2013.03.180

    Article  Google Scholar 

  7. Wan J, Fang G, Yin H, Liu X, Liu D, Zhao M, Ke W, Tao H, Tang Z (2014) Pt–Ni alloy nanoparticles as superior counter electrodes for dye-sensitized solar cells: experimental and theoretical understanding. Adv Mater 26(48):8101–8106. doi:10.1002/adma.201403951

    Article  Google Scholar 

  8. Bajpai R, Roy S, Kumar P, Bajpai P, Kulshrestha N, Rafiee J, Koratkar N, Misra DS (2011) Graphene supported platinum nanoparticle counter-electrode for enhanced performance of dye-sensitized solar cells. ACS Appl Mater Interface 3(10):3884–3889. doi:10.1021/am200721x

    Article  Google Scholar 

  9. Gong F, Wang H, Wang Z (2011) Self-assembled monolayer of graphene/Pt as counter electrode for efficient dye-sensitized solar cell. Phys Chem Chem Phys 13(39):17676–17682. doi:10.1039/C1CP22542A

    Article  Google Scholar 

  10. Yue G, Wu J, Xiao Y, Huang M, Lin J, Fan L, Lan Z (2013) Platinum/graphene hybrid film as a counter electrode for dye-sensitized solar cells. Electrochim Acta 92:64–70. doi:10.1016/j.electacta.2012.11.020

    Article  Google Scholar 

  11. Zhai P, Chang Y, Huang Y, Wei T, Su H, Feng S (2014) Water-soluble microwave-exfoliated graphene nanosheet/platinum nanoparticle composite and its application in dye-sensitized solar cells. Electrochim Acta 132:186–192. doi:10.1016/j.electacta.2014.03.145

    Article  Google Scholar 

  12. Cheng C, Lin C, Shan C, Tsai S, Lin K, Chang C, Chien FS-S (2013) Platinum-graphene counter electrodes for dye-sensitized solar cells. J Appl Phys 114(1):014503. doi:10.1063/1.4812498

    Article  Google Scholar 

  13. Li P, Wu J, Lin J, Huang M, Huang Y, Li Q (2009) High-performance and low platinum loading Pt/carbon black counter electrode for dye-sensitized solar cells. Sol Energy 83(6):845–849. doi:10.1016/j.solener.2008.11.012

    Article  Google Scholar 

  14. Tripathi B, Yadav P, Pandey K, Kanade P, Kumar M, Kumar M (2014) Investigating the role of graphene in the photovoltaic performance improvement of dye-sensitized solar cell. Mat Sci Eng B-Solid 190:111–118. doi:10.1016/j.mseb.2014.09.016

    Article  Google Scholar 

  15. Lin C, Lee C, Ho S, Wei T, Chi Y, Huang KP, He J (2014) Nitrogen-doped graphene/platinum counter electrodes for dye-sensitized solar cells. ACS Photonics 1(2):1264–1269. doi:10.1021/ph500219r

    Article  Google Scholar 

  16. Dao V, Larina LL, Suh H, Hong K, Lee J, Choi H (2014) Optimum strategy for designing a graphene-based counter electrode for dye-sensitized solar cells. Carbon 77:980–992. doi:10.1016/j.carbon.2014.06.015

    Article  Google Scholar 

  17. Hoshi H, Tanaka S, Miyoshi T (2014) Pt-graphene electrodes for dye-sensitized solar cells. Mat Sci Eng B-Solid 190:47–51. doi:10.1016/j.mseb.2014.09.003

    Article  Google Scholar 

  18. Trung NB, Tam TV, Kim HR, Hur SH, Kim EJ, Choi WM (2014) Three-dimensional hollow balls of graphene–polyaniline hybrids for supercapacitor applications. Chem Eng J 255:89–96. doi:10.1016/j.cej.2014.06.028

    Article  Google Scholar 

  19. Tan Y, Zhu K, Li D, Bai F, Wei Y, Zhang P (2014) N-doped graphene/Fe–Fe3C nano-composite synthesized by a Fe-based metal organic framework and its anode performance in lithium ion batteries. Chem Eng J 258:93–100. doi:10.1016/j.cej.2014.07.066

    Article  Google Scholar 

  20. Seger B, Kamat PV (2009) Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J Phys Chem C 113(19):7990–7995. doi:10.1021/jp900360k

    Article  Google Scholar 

  21. López Guerra E, Shanmugharaj AM, Choi WS, Ryu SH (2013) Thermally reduced graphene oxide-supported nickel catalyst for hydrogen production by propane steam reforming. Appl Catal A 468:467–474. doi:10.1016/j.apcata.2013.09.025

    Article  Google Scholar 

  22. Ghaleb ZA, Mariatti M, Ariff ZM (2014) Properties of graphene nanopowder and multi-walled carbon nanotube-filled epoxy thin-film nanocomposites for electronic applications: the effect of sonication time and filler loading. Composites A 58:77–83. doi:10.1016/j.compositesa.2013.12.002

    Article  Google Scholar 

  23. Qiu Y, Cheng Z, Guo B, Fan H, Sun S, Wu T, Jin L, Fan L, Feng X (2015) Preparation of activated carbon paper through a simple method and application as a supercapacitor. J Mater Sci 50(4):1586–1593. doi:10.1007/s10853-014-8719-9

    Article  Google Scholar 

  24. Wan L, Wang S, Wang X, Dong B, Xu Z, Zhang X, Yang B, Peng S, Wang J, Xu C (2011) Room-temperature fabrication of graphene films on variable substrates and its use as counter electrodes for dye-sensitized solar cells. Solid State Sci 13(2):468–475. doi:10.1016/j.solidstatesciences.2010.12.014

    Article  Google Scholar 

  25. Li Y, Gao W, Ci L, Wang C, Ajayan PM (2010) Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon 48(4):1124–1130. doi:10.1016/j.carbon.2009.11.034

    Article  Google Scholar 

  26. Ito S, Chen P, Comte P, Nazeeruddin MK, Liska P, Péchy P, Grätzel M (2007) Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Prog Photovolt 15(7):603–612. doi:10.1002/pip.768

    Article  Google Scholar 

  27. Staudenmaier L (1899) Verfahren zur darstellung der graphitsäure. Ber Dtsch Chem Ges 32(2):1394–1399. doi:10.1002/cber.18990320208

    Article  Google Scholar 

  28. Wang J, Wang X, Wan L, Yang Y, Wang S (2010) An effective method for bulk obtaining graphene oxide solids. Chin J Chem 28(10):1935–1940. doi:10.1002/cjoc.201090322

    Article  Google Scholar 

  29. Yang C, Zhang HQ, Zheng YR (2011) DSSC with a novel Pt counter electrodes using pulsed electroplating techniques. Curr Appl Phys 11(1):S147–S153. doi:10.1016/j.cap.2010.11.012

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support of Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20114208110004), and the National Natural Science Foundation of China (Grant Nos. 21402045 and 51102087). Also, this work was supported by the Program for Middle-aged and Young Talents from Educational Commission of Hubei Province (Grant No. Q20120103), Natural Science Foundation of Hubei Province of China (Grant No. 2014CFB167) and the Wuhan Science and Technology Bureau of Hubei Province of China (Grant No. 2013010501010140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimin Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, L., Zhang, Q., Wang, S. et al. A two-step reduction method for synthesizing graphene nanocomposites with a low loading of well-dispersed platinum nanoparticles for use as counter electrodes in dye-sensitized solar cells. J Mater Sci 50, 4412–4421 (2015). https://doi.org/10.1007/s10853-015-8998-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8998-9

Keywords

Navigation