Skip to main content
Log in

Formation of GeSn layers on Si (001) substrates at high growth temperature and high deposition rate by sputter epitaxy method

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

GeSn layers are formed on Si substrates by the sputter epitaxy method. Flat GeSn layers with 11.5 % Sn content are obtained. In the X-ray diffraction spectra of the GeSn layers with 11.5 % Sn content grown at 523 K, a sharp Ge (004) peak appears at about 64.5306° and the full width at half maximum is about 0.0984°. However, the surface segregation of Sn is observed in the GeSn layers with 11.5 % Sn content at growth temperatures of 548 K and above in this study, which increases the surface roughness. The crystallinity of the GeSn layers formed on Si substrates strongly depends on the growth temperature, but the primary factor degrading the crystallinity is the large lattice mismatch between Si and GeSn. According to a transmission electron microscope image, some dislocations appear at the interface of the GeSn layer grown at 523 K and Si owing to the large lattice mismatch, but there is no Sn surface segregation and a highly ordered atomic arrangement is observed in the upper region. It is considered that a high deposition rate limits Sn surface segregation and enables the growth of GeSn layers at relatively high temperatures, resulting in improved crystallinity. The band gap of the GeSn layers with 8.4 % Sn content is determined by Fourier transform infrared spectroscopy measurement and is about 0.52 eV, which indicates that band gap narrowing occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. He G, Atwater HA (1997) Interband transitions in SnxGe1−x alloys. Phys Rev Lett 79:1937–1940

    Article  Google Scholar 

  2. de Guevara HPL, Rodríguez AG, Contreras HN, Vidal MA (2004) Determination of the optical energy gap of Ge1−xSnx alloys with 0 < x < 0.14. Appl Phys Lett 84:4532–4534

    Article  Google Scholar 

  3. Nakamura Y, Masada A, Ichikawa M (2007) Quantum-confinement effect in individual Ge1−xSnx quantum dots on Si(111) substrates covered with ultrathin SiO2 films using scanning tunneling spectroscopy. Appl Phys Lett 91:013109

    Article  Google Scholar 

  4. Nakamura Y, Masada A, Cho SP, Tanaka N, Ichikawa M (2007) Epitaxial growth of ultrahigh density Ge1−xSnx quantum dots on Si (111) substrates by codeposition of Ge and Sn on ultrathin SiO2 films. J Appl Phys 102:124302

    Article  Google Scholar 

  5. Naruse N, Mera Y, Nakamura Y, Ichikawa M, Maeda K (2009) Fourier-transform photoabsorption spectroscopy of quantum-confinement effects in individual GeSn nanodots. Appl Phys Lett 94:093104

    Article  Google Scholar 

  6. Mathews J, Roucka R, Xie J, Yu SQ, Menéndez J, Kouvetakis J (2009) Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications. Appl Phys Lett 95:133506

    Article  Google Scholar 

  7. Mathews J, Beeler RT, Tolle J, Xu C, Roucka R, Kouvetakis J, Menéndez J (2010) Direct-gap photoluminescence with tunable emission wavelength in Ge1−ySny alloys on silicon. Appl Phys Lett 97:221912

    Article  Google Scholar 

  8. Roucka R, Mathews J, Beeler RT, Tolle J, Kouvetakis J, Menéndez J (2011) Direct gap electroluminescence from Si/Ge1−ySny p-i-n heterostructure diodes. Appl Phys Lett 98:061109

    Article  Google Scholar 

  9. Su S, Cheng B, Xue C, Wang W, Cao Q, Xue H, Hu W, Zhang G, Zuo Y, Wang Q (2011) GeSn p-i-n photodetector for all telecommunication bands detection. Opt Express 19:6400–6405

    Article  Google Scholar 

  10. Chen R, Lin H, Huo Y, Hitzman C, Kamins TI, Harris JS (2011) Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy. Appl Phys Lett 99:181125

    Article  Google Scholar 

  11. Oehme M, Werner J, Gollhofer M, Schmid M, Kaschel M, Kasper E, Schulze J (2011) Room-temperature electroluminescence from GeSn light-emitting pin diodes on Si. IEEE Photonics Technol Lett 23:1751–1753

    Article  Google Scholar 

  12. D’Costa VR, Cook CS, Birdwell AG, Littler CL, Canonico M, Zollner S, Kouvetakis J, Menéndez J (2006) Optical critical points of thin-film Ge1−ySny alloys: a comparative Ge1−ySny/Ge1−xSix study. Phys Rev B 73:125207

    Article  Google Scholar 

  13. Yin WJ, Gong XG, Wei SH (2008) Origin of the unusually large band-gap bowing and the breakdown of the band-edge distribution rule in the SnxGe1−x alloys. Phys Rev B 78:161203

    Article  Google Scholar 

  14. Gupta S, Köpe BM, Nishi Y, Saraswat KC (2013) Achieving direct band gap in germanium through integration of Sn alloying and external strain. J Appl Phys 113:073707

    Article  Google Scholar 

  15. Tonkikh AA, Eisenschmidt C, Talalaev VG, Zakharov ND, Schilling J, Schmidt G, Werner P (2013) Pseudomorphic GeSn/Ge(001) quantum wells: examining indirect band gap bowing. Appl Phys Lett 103:032106

    Article  Google Scholar 

  16. Asano T, Shimura Y, Nakatsuka O, Zaima S (2013) Influence of Sn incorporation and growth temperature on crystallinity of Ge1−xSnx layers heteroepitaxially grown on Ge(110) substrates. Thin Solid Films 531:504–508

    Article  Google Scholar 

  17. Chen R, Huang YC, Gupta S, Lin AC, Sanchez E, Kim Y, Saraswat KC, Kamins TI, Harris JS (2013) Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing. J Cryst Growth 365:29–34

    Article  Google Scholar 

  18. Hanafusa H, Kasamatsu A, Hirose N, Mimura T, Matsui T, Suda Y (2008) Strain-relaxed Si1−xGex and strained Si grown by sputter epitaxy. Jpn J Appl Phys 47:3020–3023

    Article  Google Scholar 

  19. Hanafusa H, Hirose N, Kasamatsu A, Mimura T, Matsui T, Chong HMH, Mizuta H, Suda Y (2011) Si/Ge hole-tunneling double-barrier resonant tunneling diodes formed on sputtered flat Ge layers. Appl Phys Express 4:024102

    Article  Google Scholar 

  20. Hanafusa H, Hirose N, Kasamatsu A, Mimura T, Matsui T, Suda Y (2012) Ge flat layer growth on heavily phosphorus-doped Si(001) by sputter epitaxy. Jpn J Appl Phys 51:055502

    Article  Google Scholar 

  21. Yoshikawa M, Otsuka H, Kasamatsu A, Hirose N, Mimura T, Matsui T, Suda Y (2012) SiGe doped-channel FET formed by sputter epitaxy method. ECS Trans 50:145–149

    Article  Google Scholar 

  22. Tsukamoto T, Hirose N, Kasamatsu A, Mimura T, Matsui T, Suda Y (2013) Effects of boron dopants of Si (001) substrates on formation of Ge layers by sputter epitaxy method. Appl Phys Lett 103:172103

    Article  Google Scholar 

  23. Tsukamoto T, Hirose N, Kasamatsu A, Mimura T, Matsui T, Suda Y (2015) Investigation of Sn surface segregation during GeSn epitaxial growth by Auger electron spectroscopy and energy dispersive X-ray spectroscopy. Appl Phys Lett 106:052103

    Article  Google Scholar 

  24. de Guevara HPL, Rodríguez AG, Contreras HN, Vidal MA (2003) Ge1−xSnx alloys pseudomorphically grown on Ge(001). Appl Phys Lett 83:4942–4944

    Article  Google Scholar 

  25. Zheng J, Li L, Zhou T, Zuo Y, Li C, Cheng B, Wang Q (2014) Growth of crystalline Ge1−xSnx films on Si (100) by magnetron sputtering. ECS Solid State Lett 3:P111–P113

    Article  Google Scholar 

  26. Gurdal O, Hasan MA, Sardela MR Jr, Greene JE, Radamson HH, Sundgren JE, Hansson GV (1995) Growth of metastable Ge1−xSnx/Ge strained layer superlattices on Ge(001)2 × 1 by temperature-modulated molecular beam epitaxy. Appl Phys Lett 67:956–958

    Article  Google Scholar 

  27. López MR, Contreras HN, Desjardins P, Gurdal O, Taylor N, Carlsson JRA, Greene JE (1998) Raman scattering from fully strained Ge1−xSnx (x ≤ 0.22) alloys grown on Ge(001)2 × 1 by low-temperature molecular beam epitaxy. J Appl Phys 84:2219–2223

    Article  Google Scholar 

  28. Su S, Wang W, Cheng B, Zhang G, Hu W, Xue C, Zuo Y, Wang Q (2011) Epitaxial growth and thermal stability of Ge1−xSnx alloys on Ge-buffered Si(001) substrates. J Cryst Growth 317:43–46

    Article  Google Scholar 

  29. Nakamura M, Shimura Y, Takeuchi S, Nakatsuka O, Zaima S (2012) Growth of Ge1−xSnx heteroepitaxial layers with very high Sn contents on InP(001) substrates. Thin Solid Films 520:3201–3205

    Article  Google Scholar 

  30. Coppinger M, Hart J, Bhargava N, Kim S, Kolodzey J (2013) Photoconductivity of germanium tin alloys grown by molecular beam epitaxy. Appl Phys Lett 102:141101

    Article  Google Scholar 

  31. Roucka R, Mathews J, Weng C, Beeler R, Tolle J, Menéndez J, Kouvetakis J (2011) High-performance near-IR photodiodes: a novel chemistry-based approach to Ge and Ge-Sn devices integrated on silicon. IEEE J Quantum Electron 47:213–222

    Article  Google Scholar 

  32. Grzybowski G, Beeler RT, Jiang L, Smith DJ, Kouvetakis J, Menéndez J (2012) Next generation of Ge1−ySny (y = 0.01–0.09) alloys grown on Si(100) via Ge3H8 and SnD4: reaction kinetics and tunable emission. Appl Phys Lett 101:072105

    Article  Google Scholar 

  33. Chibane Y, Ferhat F (2010) Electronic structure of SnxGe1−x alloys for small Sn compositions: unusual structural and electronic properties. J Appl Phys 107:053512

    Article  Google Scholar 

  34. Zhang D, Xue C, Cheng B, Su S, Liu Z, Zhang X, Zhang G, Li C, Wang Q (2013) High-responsivity GeSn short-wave infrared p-i-n photodetectors. Appl Phys Lett 102:141111

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers 25820121. This work was partly carried out in Advanced ICT Devices Lab in NICT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Tsukamoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsukamoto, T., Hirose, N., Kasamatsu, A. et al. Formation of GeSn layers on Si (001) substrates at high growth temperature and high deposition rate by sputter epitaxy method. J Mater Sci 50, 4366–4370 (2015). https://doi.org/10.1007/s10853-015-8990-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8990-4

Keywords

Navigation