Skip to main content
Log in

Structural phase transformations in radiolytically synthesized Al–Cu bimetallic nanoparticles

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The structural changes of radiolytically prepared aluminium–copper (Al–Cu) bimetallic nanoparticles by adjusting the precursors’ mole ratio and gamma radiation dose were investigated by transmission electron microscopy, field emission scanning electron microscopy/energy dispersive spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), and X-band continuous wave electron paramagnetic resonance (EPR). The EPR spectrum was also analysed through the simulation of the powder-like EPR spectra. The results note that in prepared samples with higher Al contents, formation of core–shell structure is dominant, whereas in Cu-rich samples, the final structures are primarily in alloy and oxide forms. According to the analysis of data obtained from X-ray diffraction, FTIR, and EPR, we found that the unpaired electron of the Cu2+ ion in various phases play the main role in structural phase transformation of Al–Cu nanoparticles. Additionally, based on the information extracted from simulated EPR peaks of Cu–Cu, the diameter of the Cu core in core–shell structures was obtained. We showed that by increasing the gamma radiation dose from 80 to 120 kGy, the overall size of nanoparticles decreases from 9.47 to 3.75 nm, but the contribution of copper core increases from 11 to 22 % of overall particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shehata F, Fathy A, Abdelhameed M, Moustafa S (2009) Preparation and properties of Al2O3 nanoparticle reinforced copper matrix composites by in situ processing. Mater Des 30(7):2756–2762

    Article  Google Scholar 

  2. Mazahery A, Shabani M (2011) Investigation on mechanical properties of nano-Al2O3- reinforced aluminum matrix composites. J Compos Mater. doi:10.1177/0021998311401111

    Google Scholar 

  3. Teghil R, d’Alessio L, Simone M, Zaccagnino M, Ferro D, Sordelet D (2000) Pulsed laser ablation of Al–Cu–Fe quasicrystals. Appl Surf Sci 168(1):267–269

    Article  Google Scholar 

  4. Denisova J, Katkevics J, Erts D, Viksna A (2011) An impedance study of complex Al/Cu-Al2O3 electrode. IOP Conf Ser: Mater Sci Eng 23:012040. doi:10.1088/1757-899X/23/1/012040

    Article  Google Scholar 

  5. Abedini A, Saion E, Larki F (2012) Radiation-induced reduction of mixed copper and aluminum ionic aqueous solution. J Radioanal Nucl Chem 292(3):983–987

    Article  Google Scholar 

  6. Abedini A, Larki F, Saion E, Noroozi M (2013) Effect of Cu2+/Al3+ mole ratio on structure of Cu–Al bimetallic nanoparticles prepared by radiation induced method. Kerntechnik 78(3):214–219

    Article  Google Scholar 

  7. Oh G-D, Byun B-S, Lee S, Choi S-H, Kim MI, Park HG (2007) Radiolytic synthesis of Ag-loaded polystyrene (Ag-PS) nanoparticles and their antimicrobial efficiency againststaphylococcus aureus andklebsiella pneumoniase. Macromol Res 15(4):285–290

    Article  Google Scholar 

  8. Park HJ, Kim HJ, Kim SH, Oh SD, Choi SH (2007) Radiolytic synthesis of hybrid silver nanoparticles and their biobehavior. Key Eng Mater 342:897–900

    Article  Google Scholar 

  9. Zhang Z, Nenoff TM, Leung K, Ferreira SR, Huang JY, Berry DT, Provencio PP, Stumpf R (2010) Room-temperature synthesis of Ag − Ni and Pd − Ni alloy nanoparticles. J Phys Chem C 114(34):14309–14318

    Article  Google Scholar 

  10. Plech A, Kotaidis V, Siems A, Sztucki M (2008) Kinetics of the X-ray induced gold nanoparticle synthesis. Phys Chem Chem Phys 10(26):3888–3894

    Article  Google Scholar 

  11. Belloni J (2006) Nucleation, growth and properties of nanoclusters studied by radiation chemistry: application to catalysis. Catal Today 113(3):141–156

    Article  Google Scholar 

  12. Lee K-P, Gopalan AI, Santhosh P, Lee SH, Nho YC (2007) Gamma radiation induced distribution of gold nanoparticles into carbon nanotube–polyaniline composite. Compos Sci Technol 67(5):811–816

    Article  Google Scholar 

  13. Abedini A, Daud AR, Hamid MAA, Othman NK, Saion E (2013) A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res Lett 8(1):1–10

    Article  Google Scholar 

  14. Abedini A, Saion E, Larki F, Zakaria A, Noroozi M, Soltani N (2012) Room temperature radiolytic synthesized Cu@ CuAlO2-Al2O3 nanoparticles. Int J Mol Sci 13(9):11941–11953

    Article  Google Scholar 

  15. Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178(1):42–55

    Article  Google Scholar 

  16. Mott D, Galkowski J, Wang L, Luo J, Zhong C-J (2007) Synthesis of size-controlled and shaped copper nanoparticles. Langmuir 23(10):5740–5745

    Article  Google Scholar 

  17. Parvin F, Khan MA, Saadat A, Khan MAH, Islam JM, Ahmed M, Gafur M (2011) Preparation and characterization of gamma irradiated sugar containing starch/poly (vinyl alcohol)-based blend films. J Polym Environ 19(4):1013–1022

    Article  Google Scholar 

  18. El-Sawy N, El-Arnaouty M, Ghaffar AA (2010) γ-Irradiation effect on the non-cross-linked and cross-linked polyvinyl alcohol films. Polym-Plast Technol 49(2):169–177

    Article  Google Scholar 

  19. Hallaji H, Keshtkar AR, Moosavian MA (2014) A novel electrospun PVA/ZnO nanofiber adsorbent for U (VI), Cu (II) and Ni (II) removal from aqueous solution. J Taiwan Inst Chem, Eng

    Google Scholar 

  20. Chen J, Zhan Y, Zhu J, Chen C, Lin X, Zheng Q (2010) The synergetic mechanism between copper species and ceria in NO abatement over Cu/CeO2 catalysts. Appl Catal A 377(1):121–127

    Article  Google Scholar 

  21. Tiwari SK (2012) Defect related photoluminescence and EPR study of sintered polycrystalline ZnO. arXiv preprint arXiv:12026335

  22. Li G, Dimitrijevic NM, Chen L, Rajh T, Gray KA (2008) Role of Surface/Interfacial Cu2+ Sites in the Photocatalytic Activity of Coupled CuO − TiO2 Nanocomposites. J Phys Chem C 112(48):19040–19044

    Article  Google Scholar 

  23. Poznyak S, Pergushov V, Kokorin A, Kulak A, Schlaepfer C (1999) Structure and electrochemical properties of species formed as a result of Cu (II) ion adsorption onto TiO2 nanoparticles. J Phys Chem B 103(8):1308–1315

    Article  Google Scholar 

  24. Brahimi R, Trari M, Bouguelia A, Bessekhouad Y (2010) Electrochemical intercalation of O2− in CuAlO2 single crystal and photoelectrochemical properties. J Solid State Electrochem 14(7):1333–1338

    Article  Google Scholar 

  25. Christensen NE, Svane A, Laskowski R, Palanivel B, Modak P, Chantis A, Van Schilfgaarde M, Kotani T (2010) Electronic properties of 3 R-CuAlO2 under pressure: three theoretical approaches. Phys Rev B 81(4):045203

    Article  Google Scholar 

  26. Viano A, Mishra S, Lloyd R, Losby J, Gheyi T (2003) Thermal effects on ESR signal evolution in nano and bulk CuO powder. J Non-Cryst Solids 325(1):16–21

    Article  Google Scholar 

  27. Kozlevčar B (2008) Structural analysis of a series of copper (II) coordination compounds and correlation with their magnetic properties. Croat Chem Acta 81(2):369–379

    Google Scholar 

  28. Kawabata A (1970) Electronic properties of fine metallic particles. III. ESR absorption line shape. J Phys Soc Jpn 29(4):902–911

    Article  Google Scholar 

  29. Kubo R (1962) Electronic properties of metallic fine particles. I J Phys Soc Jpn 17(6):975–986

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge that this work was financially supported by the High Institution Centre of Excellence (HiCoE) research fund (AKU95) from the Ministry of Education, Malaysia. We also would like to thank to the centre of research and instrumentation management (CRIM) Universiti Kebangsaan Malaysia for provision of laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Larki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larki, F., Abedini, A., Shabiul Islam, M. et al. Structural phase transformations in radiolytically synthesized Al–Cu bimetallic nanoparticles. J Mater Sci 50, 4348–4356 (2015). https://doi.org/10.1007/s10853-015-8988-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8988-y

Keywords

Navigation