Skip to main content
Log in

Non-linear optical properties of β-D-fructopyranose calcium chloride MOFs: an experimental and theoretical approach

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The second harmonic generation (SHG) properties of two MOFs, obtained from fructose and calcium chloride, were studied using a Non-Linear Optics Multimodal microscope. The first-order hyperpolarizability and the second-order susceptibility were calculated at the DFT level of theory. Moreover, a semi-classical approach to non-linearities in the optical behaviour was used in order to determine the features responsible for the SHG. The MOFs were synthesized both in ethanol and by solid–solid interaction, with a simple, rapid and low-cost methodology with no environmental impact, and were characterized with IR and RAMAN spectroscopy and both the single-crystal and powder X-ray diffraction. Both the metal–carbohydrate-based MOFs show an interesting SHG intensity: in particular, compound 1 shows an average SH intensity more than twice that of sucrose, in agreement with the theoretical results. A favourable combination of optical properties, transparency, thermal and chemical stability makes compound 1 a potential candidate for applications in electro-optics devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chemla DS, Zyss J (1987) Non linear optical properties of organic molecules and crystals, vol 1. Academic Press, New York, p 2

    Google Scholar 

  2. Evans OR, Lin W (2002) Crystal engineering of NLO materials based on metal–organic coordination networks. Acc Chem Res 35:511–522

    Article  Google Scholar 

  3. Liang P, Xia W-X, Tian W-M, Yin X-H (2013) Synthesis, structures and properties of two metal-organic coordination polymers derived from manganese(ΙΙ), thiabendazole and polydentate carboxylic acids. Molecules 18:14826–14839

    Article  Google Scholar 

  4. Bournill G, Mansour K, Perry KJ, Khundkar L, Sleva ET, Kern R, Perry JW (1993) Powder second harmonic generation efficiencies of saccharide materials. Chem Mater 5:802–808

    Article  Google Scholar 

  5. Whitfield DM, Stojkovski S, Sarkar B (1993) Metal coordination to carbohydrates. Structures and function. Coord Chem Rev 122:171–225

    Article  Google Scholar 

  6. Cook WJ, Bugg CE (1973) A lactone-calcium chloride heptahydrate complex. Acta Crystallogr B 29:907–909

    Article  Google Scholar 

  7. Bugg CE (1973) Calcium binding to carbohydrates. Crystal structure of a hydrated calcium bromide complex of lactose. J Am Chem Soc 95:908–913

    Article  Google Scholar 

  8. Cook WJ, Bug CE (1973) Calcium binding to galactose. Crystal structure of a hydrated α-galactose-calcium bromide complex. J Am Chem Soc 95:6442–6446

    Article  Google Scholar 

  9. Cook WJ, Bugg CE (1973) Calcium interactions with d-glucans: crystal structure of α, α-Trehalose-calcium bromide monohydrate. Carbohydr Res 31:265–275

    Article  Google Scholar 

  10. Ollis J, James VJ, Angyal SJ, Pojer PM (1978) An X-ray crystallographic study of α-d-allopyranosyl α-d-allopyranoside · CaCl2 · 5H2O (a pentadentate complex). Carbohydr Res 60:219–228

    Article  Google Scholar 

  11. Fujimoto T, Oku K, Tashiro M, Machinami T (2006) Crystal structure of α, α-trehalose–calcium chloride monohydrate complex. J Carbohydr Chem 25:521–532

    Article  Google Scholar 

  12. Craig DC, Stephenson MC, Stevens JD (1974) Bis-(β-D-fructopyranose) calcium chloride trihydrate 2C6H12O6·CaCl2·3H2O. Cryst Struct Commun 3:195–199

    Google Scholar 

  13. Craig DC, Stephenson MC, Stevens JD (1974) Bis-(β-D-fructopyranose) calcium chloride dehydrate C6H12O6·CaCl2·2H2O. Cryst Struct Commun 3:277–281

    Google Scholar 

  14. Cook WJ, Bugg CE (1976) Effects of calcium interactions on sugar conformation: crystal structure of β-D-fructose–calcium bromide dihyrate. Acta Crystallogr B 32:656–659

    Article  Google Scholar 

  15. Guo J, Lu Y, Whiting R (2012) Metal-ion interactions with sugars. The crystal structure of CaCl2-fructose complex. Bull Korean Chem Soc 33:2028–2030

    Article  Google Scholar 

  16. Guo J, Zhang X (2004) Metal-ion interactions with sugars. The crystal structure and FTIR study of an SrCl2-fructose complex. Carbohydr Res 339:1421–1426

    Article  Google Scholar 

  17. Oxford-Diffraction Ltd, Abingdon, UK

  18. CrysAlisPro, Agilent Technologies, version 1.171.36.28

  19. SHELXTL, version 5.1, Bruker AXS inc., Madison

  20. Sheldrick M, SHELXL-2012

  21. Dolomano OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: A complete structure solution, refinement and analysis program. J Appl Cryst 42:339–341 (Olex2 v. 1.2.4 @OlexSys Ltd. 2004–2013)

    Article  Google Scholar 

  22. Non-drying immersion oil for microscopy, type B, code 1248, Cargille Laboratories

  23. Enhance Ultra (Cu) X-ray source, Agilent Technologies

  24. Mortati L, Divieto C, Sassi MP (2012) CARS and SHG microscopy to follow collagen production in living human corneal fibroblasts and mesenchymal stem cells in fibrin hydrogel 3D cultures. J Raman Spectrosc 43:675–680

    Article  Google Scholar 

  25. Rasband WS, Image J (1997–2014) US National Institutes of Health, Bethesda, Maryland, USA. http://imagej.nih.gov/ij/

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Revision A.02 Gaussian, Inc., Wallingford, CT

  27. Schlegel HB, Csizmadia IG, Daudel R, Reidel D (1981) Publ Co, AB initio energy derivatives calculated analytically. Comput Theor Org Chem, 129–159

  28. Schlegel HB (1982) An efficient algorithm for calculating abinitio energy gradients using s, p Cartesian Gaussians. J Chem Phys 77:3676–3681

    Article  Google Scholar 

  29. Schlegel HB, Binkley JS, Pople JA (1984) First and second derivatives of two electron integrals over Cartesian Gaussians using Rys polynomials. J Chem Phys 80:1976–1981

    Article  Google Scholar 

  30. Schlegel HB (1982) Optimization of equilibrium geometries and transition structures. J Comput Chem 3:214–218

    Article  Google Scholar 

  31. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys Rev A 38:3098–3100

    Article  Google Scholar 

  32. Becke AD (1993) Density functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  Google Scholar 

  33. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  Google Scholar 

  34. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York, pp 63–88

    Google Scholar 

  35. Parsons DF, Ninham BW (2009) Ab initio molar volumes and gaussian radii. J Phys Chem A 113:1141–1150

    Article  Google Scholar 

  36. Junicke H, Bruhn C, Kluge R, Serianni AS, Steinborn D (1999) Novel platinum(IV)—carbohydrate complexes: metal ion coordination behavior of monosaccharides in organic solvents. J Am Chem Soc 121:6232–6241 (and references therein)

    Article  Google Scholar 

  37. CSD-Cambridge Structural Database

  38. Cochran W (1946) Addition compounds between sucrose and the sodium halides. Nature 157:231

    Article  Google Scholar 

  39. Tajmir-Riahi HA (1986) Sugar interaction with calcium ion. Synthesis and vibrational spectra of crystalline β-d-fructose and its calcium halide adducts. J Inorg Biochem 27:123–131

    Article  Google Scholar 

  40. Szarek WA, Korppi-Tommola SL, Shurvell HF, Smith VH Jr, Martin OR (1984) A raman and infrared study of crystalline d-fructose, L-sorbose, and related carbohydrates. Hydrogen bonding and sweetness. Can J Chem 62:1512–1518

    Article  Google Scholar 

  41. Kanis DR, Ratner MA, Marks TJ (1994) Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chem Rev 94:195–242

    Article  Google Scholar 

  42. Suponitsky KY, Tafur S, Masunov AEJ (2008) Applicability of hybrid density functional theory methods to calculation of molecular hyperpolarizability. J Chem Phys 129(044109):1–11

    Google Scholar 

Download references

Acknowledgements

The authors thank the University of Torino and the Italian Ministero dell’Università e della Ricerca (MiUR) for financial support. This work was partially supported by Joint Research Project SIB54 “Bio-SITrace”, co-funded by European Metrology Research Programme (EMRP). The EMRP is jointly funded by the EMRP participating countries within the EURAMET and the European Union. We thank also the Interdepartmental Centre Scansetti for the opportunity to use the Horiba JobinYvon micro-Raman instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenica Marabello.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marabello, D., Antoniotti, P., Benzi, P. et al. Non-linear optical properties of β-D-fructopyranose calcium chloride MOFs: an experimental and theoretical approach. J Mater Sci 50, 4330–4341 (2015). https://doi.org/10.1007/s10853-015-8985-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8985-1

Keywords

Navigation