Skip to main content
Log in

Synthesis of polymer-based hybrid materials via Mn(II) oxidation with N-bromosulphonamide polymer and their characterization

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper reports on synthesis and characteristics of a new hybrid material containing manganese oxides and hydrated manganese oxides (R/MO/HMO) dispersed in the structure of crosslinked copolymer. Styrene/divinylbenzene copolymer with macroporous structure, containing N-bromosulphonamide groups (1.64 mmol g−1), was used as macromolecular reagent. The new product has been obtained in the reaction of the copolymer with aqueous MnSO4 solution. Syntheses have been done by the batchwise and the column method using MnSO4 solutions in distilled water or natural mineral water (acting as a pH buffer). It has been shown that maintaining the pH of the reactant solution at adequately high level has a significant influence on the reaction as the pH decrease occurs parallel with reaction progress. The synthesized hybrid material contained ca. 7 % of manganese. The obtained material was characterized by: SEM–EDS, FT-IR, EPR and UV–Vis reflectance spectra, porous characteristics and magnetic measurements. It has been shown that the manganese deposit contains hydrated manganese(IV) oxides as the main component and minor amount of adsorbed Mn2+ ions. The prepared hybrid material has been found to be amorphous and paramagnetic. The synthesized substance emerges as a new highly reactive material applicable in the sorption and oxidation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gómez-Romero P, Sanchez C (2004) Functional hybrid materials. Willey, Weinheim

    Google Scholar 

  2. Kickelbick G (2007) Hybrid materials. synthesis, characterization and applications. Willey, Weinheim

    Google Scholar 

  3. Ashby MF, Bréchet YJM (2003) Designing hybrid materials. Acta Mater 51:5801–5821

    Article  Google Scholar 

  4. Guibal E, Vincent T, Navarro R (2014) Metal ion biosorption on chitosan for the synthesis of advanced materials. J Mater Sci 49:5505–5518. doi:10.1007/s10853-014-8301-5

    Article  Google Scholar 

  5. Wang Z, Wu G, Wang M, He C (2009) An imprinted organic-inorganic hybrid sorbent for selective separation of copper ion from aqueous solution. J Mater Sci 44:2694–2699. doi:10.1007/s10853-009-3353-7

    Article  Google Scholar 

  6. Zhao X, Lv L, Pan B, Zhang W, Zhang S, Zhang Q (2011) Polymer-supported nanocomposites for environmental application: a review. Chem Eng J 170:381–394

    Article  Google Scholar 

  7. Cumbal L, Greenleaf J, Leun D, SenGupta AK (2003) Polymer supported inorganic nanoparticles: characterization and environmental applications. React Funct Polym 54:167–180

    Article  Google Scholar 

  8. Sarkar S, Chatterjee PK, Cumbal LH, SenGupta AK (2011) Hybrid ion exchanger supported nanocomposites: sorption and sensing for environmental applications. Chem Eng J 166:923–931

    Article  Google Scholar 

  9. Kowalczyk M, Hubicki Z, Kołodyńska D (2013) Modern hybrid sorbents—new ways of heavy metal removal from waters. Chem Eng Process 70:55–65

    Article  Google Scholar 

  10. Kołodyńska D, Kowalczyk M, Hubicki Z (2014) Evaluation of iron-based hybrid materials for heavy ions removal. J Mater Sci 49:2483–2495. doi:10.1007/s10853-013-7944-y

    Article  Google Scholar 

  11. Sarkar S, Blaney LM, Gupta A, Ghosh D, SenGupta AK (2007) Use of ArsenXnp, a hybrid anion exchanger, for arsenic removal in remote villages in the Indian subcontinent. React Funct Polym 67:1599–1611

    Article  Google Scholar 

  12. Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang O (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331

    Article  Google Scholar 

  13. Lenoble V, Laclautre C, Serpaud B, Deluchat V, Bollinger JC (2004) As(V) retention and As(III) simultaneous oxidation and removal on a MnO2-loaded polystyrene resins. Sci Total Environ 326:197–207

    Article  Google Scholar 

  14. Saleh TA, Agrawal S, Gupta VK (2011) Synthesis of MWCNT/MnO2 and their application for simultaneous oxidation of arsenite and sorption of arsenate. Appl Catal B 106:46–53

    Google Scholar 

  15. Su Q, Pan B, Pan B, Zhang Q, Zhang W, Lv L, Wang X, Wu J, Zhang Q (2009) Fabrication of polymer-supported nanosized hydrous manganese dioxide (HMO) for enhanced lead removal from waters. Sci Total Environ 407:5471–5477

    Article  Google Scholar 

  16. Mafé S, Manzanares JA, Riess H (1993) Donnan phenomena in membrane with charge due to ion adsorption. Effects of the interaction between adsorbed charged groups. J Chem Phys 98:2325–2331

    Article  Google Scholar 

  17. Ciechanowska A, Hanuza J, Kociołek-Balawejder E, Stanisławska E (2012) Synthesis and characterization of polymer-based hybrid materials via oxidation of Mn(II) using N-chlorosulphonamide polymers. Mater Chem Phys 132:870–879

    Article  Google Scholar 

  18. Bogoczek R, Kociołek-Balawejder E (2008) Potentiometric studies of oxidation-reduction reactions with redox copolymers. J Appl Polym Sci 107:2190–2195

    Article  Google Scholar 

  19. Bogoczek R, Kociołek-Balawejder E (1991) N-Bromo-poly(styrene-co-divinylbenzene) sulphonamide metal salts. Angew Makromol Chem 188:85–96

    Article  Google Scholar 

  20. Nawrocki J, Biłozor S (2000) Uzdatnianie wody, Procesy chemiczne i biologiczne. Wydawnictwo Naukowe PWN, Warszawa

    Google Scholar 

  21. Melichova Z, Treindl L, Valent I (2001) Kinetics and mechanism of the autocatalytic oxidation of Mn(II) by bromine. React Kinet Catal Lett 74:79–86

    Article  Google Scholar 

  22. Roeges NPG (1994) A guide to the complete interpretation of the infrared spectra of organic structures. John Wiley & Sons, New York

    Google Scholar 

  23. Flora M, Ardelean I (2006) EPR investigation of the xMnO·(100−x)[2B2O3·MO] (MO → CdO, SrO) glass systems. Optoelectro Adv Mater 8:1114–1117

    Google Scholar 

  24. Vaidhyanathan B, Kumar CP, Rao JL, Rao KJ (1998) Spectroscopic investigations of manganese ions in microwave-prepared NaPO3-PbO glasses. Phys Chem Solids 59:121–128

    Article  Google Scholar 

  25. Chakradhar RPS, Ramesh KP, Rao JL, Ramakrishna J (2003) Mixed alkali effect in borate glasses—EPR and optical absorption studies in xNa2O–(30−x)K2O–70B2O3glasses doped with Mn2+. J Phys Chem Solids 64:641–650

    Article  Google Scholar 

  26. Reddy MS, Krishna GM, Veeraiah N (2006) Spectroscopic and magnetic studies of manganese ions in ZnO-Sb2O3-B2O3 glass system. J Phys Chem Solids 67:789–795

    Article  Google Scholar 

  27. El-Ahdal MA, Antar EM, Mahmoud HH, Ezz-Eldin FM (2011) ESR and infrared studies of gamma-irradiated lead-phosphate glasses doped with MnO2. J App Sci Res 7:1434–1441

    Google Scholar 

  28. Masaru Y, Zhidong Y, Yoshinobu M, Yasushi M, Kohei K, Tetsuo Y (2004) X-ray irradiation-induced coloration of manganese in soda-lime silicate glass. J Non Cryst Solids 333:37–43

    Article  Google Scholar 

  29. Chakradhar RPS, Sivaramaiah G, Rao JL, Gopal NO (2005) EPR and optical investigations of manganese ions in alkalilead tetraborate glasses. Spectrochim Acta A 62:761–768

    Article  Google Scholar 

  30. De Vos DE, Weckhuysen BM, Bein T (1996) ESR fine structure of manganese ions in zeolite A detects strong variations of the coordination environment. J Am Chem Soc 118:9615–9622

    Article  Google Scholar 

  31. Reddy SL, Frost RI, Sowjanya G, Reddy NCG, Reddy GS, Reddy BJ (2008) EPR, UV-Visible, and near-infrared spectroscopic characterization of dolomite. Adv Condens Matter Phys 2008:8. doi:10.1155/2008/175862

    Google Scholar 

  32. Lever ABP (1968) Inorganic electron spectroscopy. Elsevier, Amsterdam

    Google Scholar 

  33. Banerjee RS, Basu S (1965) Ligand field spectra of some metals in their unfamiliar oxidation states—III: tetravalent manganese. J Inorg Nucl Chem 27:359–360

    Article  Google Scholar 

  34. Bogoczek R, Kociołek-Balawejder E (1988) Thermal analysis of macromolecular “Haloamines”. J Therm Anal 33:1109–1117

    Article  Google Scholar 

  35. Kociołek-Balawejder E, Ciechanowska A, Ociński D, Stanisławska E (2009) A method of producing hybrid copolymer containing tetravalent manganese oxides. Pat. PL 213766, 1 July 2009

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Ciechanowska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciechanowska, A., Hanuza, J., Stanisławska, E. et al. Synthesis of polymer-based hybrid materials via Mn(II) oxidation with N-bromosulphonamide polymer and their characterization. J Mater Sci 50, 4300–4311 (2015). https://doi.org/10.1007/s10853-015-8982-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8982-4

Keywords

Navigation