Skip to main content
Log in

Solvothermal self-assembly of magnetic Fe3O4 nanochains by ethylenediamine functionalized nanoparticles for chromium(VI) removal

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, one-dimensional amino-functionalized magnetic Fe3O4 nanochains (MNCs) consisting of self-assembled Fe3O4 nanoparticles (NPs) were synthesized via a facile one-pot solvothermal route at 180 °C using FeCl3·6H2O as the iron source and ethylenediamine as the surfactant without the use of any external magnetic fields or templates. The synthesized MNCs consist of nanospheres with a diameter of 120 nm assembled from Fe3O4 NPs and have good water dispersibility with a high Brunauer–Emmett–Teller surface area (44.028 m2 g−1). The magnetic measurements revealed the superparamagnetic nature of the as-prepared MNCs with a saturation magnetization of 70.9 emu g−1 at room temperature. The nanochain formation mechanism was proposed as a magnetic dipole–dipole interaction and caused by the effects of the ethylenediamine surfactants. These MNCs were confirmed to be efficient adsorbents for chromium(VI) removal. The adsorption isotherm conformed to the Langmuir model at a Cr(VI) ion concentration higher than 40 mg L−1, and the maximum removal capacity was 60.25 mg g−1 at a solid-to-liquid ratio of 1:1000 g/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yi DK, Lee SS, Ying JY (2006) Synthesis and applications of magnetic nanocomposite catalysts. Chem Mater 18:2459–2461

    Article  Google Scholar 

  2. Frey NA, Peng S, Cheng K, Sun S (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38:2532–2542

    Article  Google Scholar 

  3. Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42:1097–1107

    Article  Google Scholar 

  4. Shen H, Chen J, Dai H, Wang L, Hu M, Xia Q (2013) New insights into the sorption and detoxification of chromium(VI) by tetraethylenepentamine functionalized nanosized magnetic polymer adsorbents: mechanism and pH effect. Ind Eng Chem Res 52:12723–12732

    Article  Google Scholar 

  5. Gao MR, Zhang SR, Jiang J, Zheng YR, Tao DQ, Yu SH (2011) One-pot synthesis of hierarchical magnetite nanochain assemblies with complex building units and their application for water treatment. J Mater Chem 21:16888–16892

    Article  Google Scholar 

  6. Zhu J, Wei S, Chen M, Gu H, Rapole SB, Pallavkar S, Ho TC, Hopper J, Guo Z (2013) Magnetic nanocomposites for environmental remediation. Adv Powder Technol 24:459–467

    Article  Google Scholar 

  7. Zhang F, Shi Y, Zhao Z, Ma B, Wei L, Lu L (2014) Amino-functionalized Fe3O4/SiO2 magnetic submicron composites and In3+ ion adsorption properties. J Mater Sci 49:3478–3483. doi:10.1007/s10853-014-8060-3

    Article  Google Scholar 

  8. Kołodyn´ska D, Kowalczyk M, Hubicki Z (2014) Evaluation of iron-based hybrid materials for heavy metal ions removal. J Mater Sci 49:2483–2495. doi:10.1007/s10853-013-7944-y

    Article  Google Scholar 

  9. He Q, Yuan T, Zhu J, Luo Z, Haldolaarachchige N, Sun L, Khasanov A, Li Y, Young DP, Wei S, Guo Z (2012) Magnetic high density polyethylene nanocomposites reinforced with in situ synthesized Fe@FeO core-shell nanoparticles. Polymer 53:3642–3652

    Article  Google Scholar 

  10. Dui J, Zhu G, Zhou S (2013) Facile and economical synthesis of large hollow ferrites and their applications in adsorption for As(V) and Cr(VI). ACS Appl Mater Interfaces 5:10081–10089

    Article  Google Scholar 

  11. Cui S, Shen X, Lin B (2006) Surface organic modification of Fe3 O4 nanoparticles by silane-coupling agents. Rare Met 25:426–430

    Article  Google Scholar 

  12. Liu HL, Ko SP, Wu JH, Jung MH, Min JH, Lee JH, An BH, Kim YK (2007) One-pot polyol synthesis of monosize PVP-coated sub-5 nm Fe3O4 nanoparticles for biomedical applications. J Magn Magn Mater 310:e815–e817

    Article  Google Scholar 

  13. Takami S, Sato T, Mousavand T, Ohara S, Umetsu M, Adschiri T (2007) Hydrothermal synthesis of surface-modified iron oxide nanoparticles. Mater Lett 61:4769–4772

    Article  Google Scholar 

  14. Liu ZL, Liu YJ, Yao KL, Ding ZH, Tao J, Wang X (2002) Synthesis and magnetic properties of Fe3O4 nanoparticles. J Mater Synth Process 10:83–87

    Article  Google Scholar 

  15. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M) = Fe Co, Mn) Nanoparticles. J Am Chem Soc 126:273–279

    Article  Google Scholar 

  16. Gan N, Jia L, Zheng L (2011) A novel sandwich electrochemical immunosensor based on the DNA-derived magnetic nanochain probes for alpha-fetoprotein. J Autom Methods Manag Chem 2011:957805

    Article  Google Scholar 

  17. Zhou SM, Zhang XT, Gong HC, Zhang B, Wu ZS, Du ZL, Wu SX (2008) Magnetic enhancement of pure gamma Fe2O3 nanochains by chemical vapor deposition. J Phys 20:075217

    Google Scholar 

  18. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  Google Scholar 

  19. Wei S, Wang Q, Zhu J, Sun L, Lin H, Guo Z (2011) Multifunctional composite core-shell nanoparticles. Nanoscale 3:4474–4502

    Article  Google Scholar 

  20. Liu Y, Chen Q (2008) Synthesis of magnetosome chain-like structures. Nanotechnology 19:475603

    Article  Google Scholar 

  21. Korth BD, Keng P, Shim I, Bowles SE, Tang C, Kowalewski T, Nebesny KW, Pyun J (2006) Polymer-coated ferromagnetic colloids from well-defined macromolecular surfactants and assembly into nanoparticle chains. J Am Chem Soc 128:6562–6563

    Article  Google Scholar 

  22. He Q, Yuan T, Yan X, Luo Z, Haldolaarachchige N, Young DP, Wei S, Guo Z (2014) One-pot synthesis of size- and morphology-controlled 1-D iron oxide nanochains with manipulated magnetic properties. Chem Commun 50:201–203

    Article  Google Scholar 

  23. He Q, Yuan T, Wei S, Haldolaarachchige N, Luo Z, Young DP, Khasanov A, Guo Z (2012) Morphology-andphase-controlled iron oxide nanoparticles stabilized with maleic anhydride grafted polypropylene. Angew Chem 51:8842–8845

    Article  Google Scholar 

  24. Jia B, Gao L (2008) Morphological transformation of Fe3O4 spherical aggregates from solid to hollow and their self-assembly under an external magnetic field. J Phys Chem C 112:666–671

    Article  Google Scholar 

  25. Wang H, Chen QW, Sun XL, Qi HP, Yang X, Zhou S, Xiong J (2009) Magnetic-field-induced formation of one-dimensional magnetite nanochains. Langmuir 25:7135–7139

    Article  Google Scholar 

  26. Ma M, Zhang Q, Dou J, Zhang H, Yin D, Geng W, Zhou Y (2012) Fabrication of one-dimensional Fe3O4/P(GMA–DVB) nanochains by magnetic-field-induced precipitation polymerization. J Colloid Interface Sci 374:339–344

    Article  Google Scholar 

  27. Zhang Y, Sun L, Fu Y, Huang ZC, Bai XJ, Zhai Y, Du J, Zhai HR (2009) The shape anisotropy in the magnetic field-assisted self-assembly chain-like structure of magnetite. J Phys Chem C 113:8152–8157

    Article  Google Scholar 

  28. Kim Y, Choi YS, Lee HJ, Yoon H, Kim YK, Oh M (2014) Self-assembly of fluorescent and magnetic Fe3O4@coordination polymer nanochains. Chem Commun 50:7617–7620

    Article  Google Scholar 

  29. Yu SH, Yoshimura M (2002) Ferrite/metal composites fabricated by soft solution processing. Adv Funct Mater 12:10–15

    Google Scholar 

  30. Zhang J, Wan J, Huang S, Du J, Zhu J, Zhang D, Yin Q, Wu Y (2010) Solvothermal synthesis and magnetic property of magnetic chains self-assembled by Fe3O4 microoctahedrons. Chin J Chem 28:1607–1612

    Article  Google Scholar 

  31. Bhaumik M, Maity A, Srinivasu VV, Onyango MS (2012) Removal of hexavalent chromium from aqueous solution using polypyrrole-polyaniline nanofibers. Chem Eng J 181–182:323–333

    Article  Google Scholar 

  32. Gu H, Rapole SB, Huang Y, Cao D, Luo Z, Wei S, Guo Z (2013) Synergistic interactions between multi-walled carbon nanotubes and toxic hexavalent chromium. J Mater Chem A 1:2011–2021

    Article  Google Scholar 

  33. Kulkarni PS, Kalyani V, Mahajani VV (2007) Removal of hexavalent chromium by membrane-based hybrid processes. Ind Eng Chem Res 46:8176–8182

    Article  Google Scholar 

  34. Wang J, Zhao L, Duan W, Han L, Chen Y (2012) Adsorption of aqueous Cr(VI) by novel fibrous adsorbent with amino and quaternary ammonium groups. Ind Eng Chem Res 51:13655–13662

    Article  Google Scholar 

  35. Hu JS, Zhong LS, Song WG, Wan LJ (2008) Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal. Adv Mater 20:2977–2982

    Article  Google Scholar 

  36. Zhao YG, Shen HY, Pan SD, Hu MQ, Xia QH (2010) Preparation and characterization of amino-functionalized nano-Fe3O4 magnetic polymer adsorbents for removal of chromium(VI) ions. J Mater Sci 45:5291–5301. doi:10.1007/s10853-010-4574-5

    Article  Google Scholar 

  37. Ni H, Xiong Z, Ye T, Zhang Z, Ma X, Li L (2012) Biosorption of copper (II) from aqueous solutions using volcanic rock matrix-immobilized Pseudomonas putida cells with surface-displayed cyanobacterial metallothioneins. Chem Eng J 204–206:264–271

    Article  Google Scholar 

  38. Zheng JG, Zhang Y, Zhai Y, Yang HW (2010) TEM and EBSD study of Fe3O4 particle chains grown and assembled in external magnetic field. Microsc Microanal 16:1790–1791

    Article  Google Scholar 

  39. Descostes M, Mercier F, Thromat N, Beaucaire C, Gautier-Soyer M (2000) Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium. Appl Surf Sci 165:288–302

    Article  Google Scholar 

  40. Rondinone AJ, Samia ACS, Zhang ZJ (1999) Superparamagnetic relaxation and magnetic anisotropy energy distribution in CoFe2O4 spinel ferrite nanocrystallites. J Phys Chem B 103:6876–6880

    Article  Google Scholar 

  41. Yuan H, Wang Y, Zhou S, Lou S (2011) Fabrication of superparamagnetic Fe3O4 hollow microspheres with a high saturation magnetization. Chem Eng J 175:555–560

    Article  Google Scholar 

  42. Yi Tan, Zhuang Z, Peng Q, Li Y (2008) Room-temperature soft magnetic iron oxide nanocrystals: synthesis, characterization, and size-dependent magnetic properties. Chem Mater 20:5029–5034

    Article  Google Scholar 

  43. Wang L, Bao J, Wang L, Zhang F, Li Y (2006) One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. Chem Eur J 12:6341–6347

    Article  Google Scholar 

  44. Liu Y, Wang Y, Zhou S, Lou S, Yuan L, Gao T, Wu X, Shi X, Wang K (2012) Synthesis of high saturation magnetization superparamagnetic Fe3O4 hollow microspheres for swift chromium removal. ACS Appl Mater Interfaces 4:4913–4920

    Article  Google Scholar 

  45. Willard MA, Kurihara LK, Carpenter EE, Calvin S, Harris VG (2004) Chemically prepared magnetic nanoparticles. Int Mater Rev 49:125–170

    Article  Google Scholar 

  46. Yan K, Li H, Li P, Zhu H, Shen J, Yi C, Wu S, Yeung KW, Xu Z, Xu H, Chu PK (2014) Self-assembled magnetic fluorescent polymeric micelles for magnetic resonance and optical imaging. Biomaterials 35:344–355

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledged support from a grant from the National High Technology Research and Development Program of China (863 Program, No. 2012AA063508-06), the Education Department of Hubei Province of China (No. D20120101), and the Wuhan Science and Technology Bureau of China (No. 201160723217).

Conflict of interest

All authors declare no conflict of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Ni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 496 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, H., Sun, X., Li, Y. et al. Solvothermal self-assembly of magnetic Fe3O4 nanochains by ethylenediamine functionalized nanoparticles for chromium(VI) removal. J Mater Sci 50, 4270–4279 (2015). https://doi.org/10.1007/s10853-015-8979-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8979-z

Keywords

Navigation