Skip to main content

Advertisement

Log in

LiFePO4 wrapped reduced graphene oxide for high performance Li-ion battery electrode

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

One of the challenges in incorporating reduced graphene oxide (rGO) in energy storage material is to synthesize the homogenized mixtures of rGO with the electrode active materials at molecular level. In this direction, we have synthesized flexible, thin sheets of rGO-wrapped LiFePO4 plates using aqueous GO solution and precursors of LiFePO4. The in situ rGO provides necessary conductivity required for the charge storage performance. The LiFePO4/rGO composite was used as a active material without using any conductive carbon additive. The composite could be able to deliver the energy as high as about 161 mAh/g at C/10 rate and posses good cyclability. The high energy storage capabilities of LiFePO4 is due to the wrapping of highly conductive thin rGO sheets, which increases the electronic conductivity of the LiFePO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188

    Article  Google Scholar 

  2. Lim J, Kang SW, Moon J, Kim S, Park H, Baboo JP, Kim J (2012) Low-temperature synthesis of LiFePO4 nanocrystals by solvothermal route. Nanoscale Res Lett 7:3

    Article  Google Scholar 

  3. Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1:123–128

    Article  Google Scholar 

  4. Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3:147–152

    Article  Google Scholar 

  5. Kim DK, Kim J (2006) Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem Solid State Lett 9:A439–A442

    Article  Google Scholar 

  6. Morgan D, Van der Ven A, Ceder G (2004) Li conductivity in Lix MPO4 (M = Mn Fe Co Ni) olivine materials. Electrochem Solid State Lett 7:A30–A32

    Article  Google Scholar 

  7. Amin R, Balaya P, Maier J (2007) Anisotropy of electronic and ionic transport in LiFePO4 single crystals. J Electrochem Solid State Lett 10:A13–A16

    Article  Google Scholar 

  8. Shri-Prakash B, Wagemaker M, Ellis BL, Singh DP, Borghols WJH, Kan WH, Ryan DH, Mulder FM, Nazar LF (2011) Direct synthesis of nanocrystalline Li0.90FePO4:observation of phase segregation of anti-site defects on delithiation. J Mater Chem 21:10085–10093

    Article  Google Scholar 

  9. Xu YN, Chung SY, Bloking JT, Chiang YM, Chinga WY (2004) Electronic structure and electrical conductivity of undoped LiFePO4. Electrochem Solid State Lett 7:A131–A134

    Article  Google Scholar 

  10. Sides CR, Croce F, Vaneica YY, Martin CR, Scrosati BA (2005) High-rate, nanocomposite LiFePO4/carbon cathode. Electrochem Solid State Lett 8:A484–A487

    Article  Google Scholar 

  11. Julien CM, Mauger A, Zaghib K (2011) Surface effects on electrochemical properties of nano-sized LiFePO4. J Mater Chem 21:9955–9968

    Article  Google Scholar 

  12. Ohzuku T, Ueda A, Nagayama M, Iwakoshi Y, Komori H (1993) Comparative study of LiCoO2, LiNi12Co12O2 and LiNiO2 for 4 volt secondary lithium cells. Electrochim Acta 38:1159–1167

    Article  Google Scholar 

  13. Striebel K, Shim J, Sierra A, Yang H, Song XY, Kostecki R, McCarthy K (2005) The development of low cost LiFePO4-based high power lithium-ion batteries. J Power Sources 146:33–38

    Article  Google Scholar 

  14. Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) Electroactivity of natural and synthetic triphylite. J Power Sources 97:503–507

    Article  Google Scholar 

  15. Huang H, Yin SC, Nazar LF (2001) Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid State Lett 4:A170–A172

    Article  Google Scholar 

  16. Doeff MM, Wilcox JD, Kostecki R, Lau G (2006) Optimization of carbon coatings on LiFePO4. J Power Sources 163:180–184

    Article  Google Scholar 

  17. Dominko R, Gaberscek M, Drofenik J, Bele M, Jamnik J (2003) Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries. Electrochim Acta 48:3709–3716

    Article  Google Scholar 

  18. Chen G, Song X, Richardson TJ (2006) Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem Solid State Lett 9:A295–A298

    Article  Google Scholar 

  19. Croce F, Epifanio AD, Hassoun J, Deptula A, Olczac T, Scrosatia B (2002) A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochem Solid State Lett 5:A47–A50

    Article  Google Scholar 

  20. Liu Z, Tay SW, Hong L, Lee JY (2011) Physical and electrochemical characterizations of LiFePO4-incorporated Ag nanoparticles. J Solid State Electrochem 15:205–209

    Article  Google Scholar 

  21. Dinh H-C, Mho S-I, Yeo I-H (2011) Electrochemical analysis of conductive polymer-coated LiFePO4 nanocrystalline cathodes with controlled morphology. Electroanalysis 23:2079

    Article  Google Scholar 

  22. Chen W-M, Huang Y-H, Yuan L-H (2011) Self-assembly LiFePO4/polyaniline composite cathode materials with inorganic acids as dopants for lithium-ion batteries. J Electroanal Chem 660:108–113

    Article  Google Scholar 

  23. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  Google Scholar 

  24. Wang S, Ang PK, Wang Z, Tang ALL, Thong JTL, Loh KP (2010) High mobility, printable, and solution-processed graphene electronics. Nano Lett 10:92–98

    Article  Google Scholar 

  25. Hou J, Shao Y, Ellis MW, Moored RB, Yie B (2011) Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys 13:15384–15402

    Article  Google Scholar 

  26. Paek SM, Yoo E, Honma I (2009) Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett 9:72–75

    Article  Google Scholar 

  27. Wu Z-S, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng H-M (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194

    Article  Google Scholar 

  28. Yang SB, Cui G, Pang S, Cao Q, Kolb U, Feng X, Maier J, Mullen K (2010) Fabrication of cobalt and cobalt oxide/graphene composites: towards high-performance anode materials for lithium ion batteries. ChemSusChem 3:236–239

    Article  Google Scholar 

  29. Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf LV, Zhang Z, Aksay IA, Liu J (2009) Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3:907–914

    Article  Google Scholar 

  30. Wang G, Wang B, Wang X, Park J, Dou S, Ahn H, Kim K (2009) Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J Mater Chem 19:8378–8384

    Article  Google Scholar 

  31. Chou SL, Wang JZ, Choucair M, Liu HK, Stride JA, Dou SX (2010) Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem Commun 12:303–306

    Article  Google Scholar 

  32. Lee JK, Smith KB, Hayner CM, Kung HH (2010) Silicon nanoparticles–graphene paper composites for Li ion battery anodes. Chem Commun 46:2025–2027

    Article  Google Scholar 

  33. Zhu N, Liu W, Xue M, Xie Z, Zhao D, Zhang M, Chen J, Cao T (2010) Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries. Electrochim Acta 55:5813–5818

    Article  Google Scholar 

  34. Paolella A, Bertoni G, Marras S, Dilena E, Colombo M, Prato M, Riedinger A, Povia M, Ansaldo A, Zaghib K, Manna L, George C (2014) Etched colloidal LiFePO4 nanoplatelets toward high-rate capable Li-ion battery electrodes. Nano Lett 14:6828–6835

    Article  Google Scholar 

  35. Hu L-H, Wu F-Y, Lin C-T, Khlobystov AN, Li L-J (2013) Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat Commun 4:1687

    Article  Google Scholar 

  36. Rui X, Zhao X, Lu Z, Tan H, Sim D, Hng HH, Yazami R, Lim TM, Yan Q (2013) Olivine-type nanosheets for lithium ion battery cathodes. ACS Nano 7:5637–5646

    Article  Google Scholar 

  37. Yang J, Wang J, Tang Y, Wang D, Li X, Hu Y, Li R, Liang G, Shamb T-K, Sun X (2013) LiFePO4–graphene as a superior cathode material for rechargeable lithium batteries: impact of stacked graphene and unfolded graphene. Energy Environ Sci 6:1521–1528

    Article  Google Scholar 

  38. Zhou X, Wang F, Zhu Y, Liu Z, Liu Z (2011) Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J Mater Chem 21:3353–3358

    Article  Google Scholar 

  39. Kim W, Ryu W, Han DW, Lim SJ, Eom JY, Kwon HS (2014) Fabrication of graphene embedded LiFePO4 using a catalyst assisted self assembly method as a cathode material for high power lithium-ion batteries. ACS Appl Mater Interfaces 6:4731–4736

    Article  Google Scholar 

  40. Su F-Y, You C, He Y-B, Lv W, Cui W, Jin F, Li B, Yang Q-H, Kang F (2010) Flexible and planar graphene conductive additives for lithium-ion batteries. J Mater Chem 20:9644–9650

    Article  Google Scholar 

  41. Wang L, Wang H, Liu Z, Xiao C, Dong S, Han P, Zhang Z, Zhang X, Bi C, Cui G (2010) A facile method of preparing mixed conducting LiFePO4/graphene composites for lithium-ion batteries. Solid State Ionics 181:1685–1689

    Article  Google Scholar 

  42. Choi D, Wanga D, Viswanathan VV, Bae I-T, Wang W, Nie Z, Zhang J-G, Graff GL, Liu J, Yang Z, Duong T (2010) Li-ion batteries from LiFePO4 cathode and anatase/graphene composite anode for stationary energy storage. Electrochem Commun 12:378–381

    Article  Google Scholar 

  43. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  Google Scholar 

  44. Kim J-K, Choi J-W, Chauhan GS, Ahn J-H, Hwang G-C, Choi J-B, Ahn H-J (2008) Enhancement of electrochemical performance of lithium iron phosphate by controlled sol–gel synthesis. Electrochim Acta 53:8258–8864

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Prof. Palani balaya of NUS for his support to carry out this work and for his invaluable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. H. Nagaraju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaraju, D.H., Kuezma, M. & Suresh, G.S. LiFePO4 wrapped reduced graphene oxide for high performance Li-ion battery electrode. J Mater Sci 50, 4244–4249 (2015). https://doi.org/10.1007/s10853-015-8976-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8976-2

Keywords

Navigation