Skip to main content
Log in

Structural and electrical characteristics of rhombohedral lead zirconate titanate single crystals

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two PbZr x Ti1−x O3 (PZT) single crystals, from a batch prepared by the flux method, were analysed to assess their chemical composition. The two single crystals were found by electron microprobe analysis to have the chemical compositions PbZr0.60Ti0.40O3 and PbZr0.65Ti0.35O3. X-ray diffraction at −93 °C revealed that both crystals have the R3m space group, which means that the R3m ↔ R3c phase transition is not observed in this composition range for temperatures above −93 °C. The dielectric permittivity was measured along the [001] direction at several frequencies from 1 kHz to 1 MHz, at varying temperatures up to 460 °C, and the parameters of the Curie–Weiss law were determined. The parameters of a thermodynamic model for the rhombohedral phase were determined by fitting the experimental data with the theoretical model. The polarization was calculated as function of the temperature for both crystals and the results were used to observe the order of the phase transition. The polarization increases when the concentration of PZT approaches the morphotropic region from the rhombohedral side. This fact, already observed in ceramic samples, is for the first time reported in single crystals which contributes for the clarification of the maximum of electrical properties in the morphotropic region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jaffe B, Cook WR Jr, Jaffe H (1971) Piezoelectric ceramics. Non-metalic solids, vol 3. Academic Press, London

    Google Scholar 

  2. Soares MR, Senos AMR, Mantas PQ (2000) Phase coexistence region and dielectric properties of PZT ceramics. J Eur Ceram Soc 20(3):321–334

    Article  Google Scholar 

  3. Cao WW, Cross LE (1993) Theoretical-model for the morphotropic phase-boundary in lead zirconate lead titanate solid-solution. Phys Rev B 47(9):4825–4830. doi:10.1103/PhysRevB.47.4825

    Article  Google Scholar 

  4. Clarke R, Whatmore RW (1976) Growth and Characterization of PbZr x Ti1−x O3 Single Crystals. J Cryst Growth 33(1):29–38

    Article  Google Scholar 

  5. Eremkin VV, Smotrakov VG, Fesenko EG (1990) Structural phase-transitions in PbZr1−x Ti x O3 crystals. Ferroelectrics 110:137–144

    Article  Google Scholar 

  6. Fesenko EG, Eremkin VV, Smotrakov VG (1986) Phase-x, T-diagram of PbZr1−x Ti x O3 crystals. Fiz Tverd Tela 28(1):324–326

    Google Scholar 

  7. Fesenko EG, Eremkin VV, Smotrakov VG, Shmalko SG, Kozakov AT (1987) Crystal-growth and study of phase x, T-diagram of PbZr1−x Ti x O3. Kristallografiya 32(4):1049–1052

    Google Scholar 

  8. Fushimi S, Ikeda T (1965) Optical study of lead zirconate-titanate. J Phys Soc Jpn 20(11):2007–2012

    Article  Google Scholar 

  9. Hatanaka T, Hasegawa H (1995) Dielectric properties of Pb(Zr x Ti1−x )O3 single crystals including monoclinic zirconia. Jpn J Appl Phys, Part 1 34(9B):5446–5448

    Article  Google Scholar 

  10. Ikeda T, Fushimi S (1962) Preliminary study on growth of lead zirconate-titanate crystals. J Phys Soc Jpn 17(7):1202–1203

    Article  Google Scholar 

  11. Pérez JA, Soares MR, Mantas PQ, Amorín H, Costa MEV, Senos AMR (2006) Growth of lead zirconate titanate single crystals by the high temperature solution method. Mater Sci Forum III Pts 1–2(514–516):184–187

    Article  Google Scholar 

  12. Sholokhovich ML (1960) The single crystals of the solid solution containing less than 12 percent of PbO and B2O3 Izv Akad Nauk SSSR. Ser Fiz 24:1242–1245

    Google Scholar 

  13. Tsuzuki K, Sakata K, Ohara G, Wada M (1973) Growth of ferroelectric Pb(Zr x Ti1−x )O3 single-crystals. Jpn J Appl Phys 12(10):1500–1503

    Article  Google Scholar 

  14. Tsuzuki K, Sakata K, Wada M (1974) Dielectric properties of single-crystals of Pb(Zr x Ti1−x )O3 solid-solutions (x ~ 0.5). Ferroelectrics 8(1–2):501–503

    Article  Google Scholar 

  15. Tsuzuki K, Sakata K (1969) Growing and some properties of Pb(Zr-Ti)O3 single crystal. Jpn J Appl Phys 8(6):816–817

    Article  Google Scholar 

  16. Zhang S, Li F (2012) High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. J Appl Phys 111(3):031301–031351. doi:10.1063/1.3679521

    Article  Google Scholar 

  17. Cheng HM, Ma JM, Zhu B, Cui YH (1993) Reaction-mechanisms in the formation of lead zirconate-titanate solid-solutions under hydrothermal conditions. J Am Ceram Soc 76(3):625–629

    Article  Google Scholar 

  18. Kanda T, Kurosawa MK, Yasui H, Higuchi T (2001) Performance of hydrothermal PZT film on high intensity operation. Sens Actuators A 89(1–2):16–21

    Article  Google Scholar 

  19. Kutty TRN, Balachandran R (1984) Direct precipitation of lead zirconate titanate by the hydrothermal method. Mater Res Bull 19(11):1479–1488

    Article  Google Scholar 

  20. Liu XY (2005) Single-crystal-like materials by the self-assembly of cube-shaped lead zirconate titanate (PZT) microcrystals. Langmuir 21(8):3207–3212. doi:10.1021/la047655o

    Article  Google Scholar 

  21. Foster CM, Bai GR, Csencsits R, Vetrone J, Jammy R, Wills LA, Carr E, Amano J (1997) Single-crystal Pb(Zr x Ti1−x )O3 thin films prepared by metal-organic chemical vapor deposition: systematic compositional variation of electronic and optical properties. J Appl Phys 81(5):2349–2357

    Article  Google Scholar 

  22. Buhlmann S (2004) Lithography-modulated self-assembly of small ferroelectric Pb(Zr, Ti)O3 single crystals. Appl Phys Lett 84(14):2614–2616. doi:10.1063/1.1690873

    Article  Google Scholar 

  23. Bokov AA, Long X, Ye Z-G (2010) Optically isotropic and monoclinic ferroelectric phases in Pb(Zr1−x Ti x )O3 (PZT) single crystals near morphotropic phase boundary. Phys Rev B 81(17):172103. doi:10.1103/PhysRevB.81.172103

    Article  Google Scholar 

  24. Fesenko OE, Smotrakov VG, Leontiev NG (1985) A study of phase T-x-E diagram of PbZr1−x Ti x O3 crystals. Ferroelectrics 63(1–4):189–196

    Article  Google Scholar 

  25. Menguy N, Caranoni C, Hilczer B, Roleder K, Dec J (1999) Transmission electron microscopy studies of Pb(Zr0.99Ti0.01)O3 single crystals. J Phys Chem Solids 60(5):625–629

    Article  Google Scholar 

  26. Ricote J, Corker DL, Whatmore RW, Impey SA, Glazer AM, Dec J, Roleder K (1998) A TEM and neutron diffraction study of the local structure in the rhombohedral phase of lead zirconate titanate. J Phys 10(8):1767–1786

    Google Scholar 

  27. Roleder K, Jankowska-Sumara I, Kugel GE, Maglione M, Fontana MD, Dec J (2000) Antiferroelectric and ferroelectric phase transitions of the displacive and order-disorder type in PbZrO3 and PbZr1−x Ti x O3 single crystals. Phase Transit 71(4):287–306

    Article  Google Scholar 

  28. Roleder K, Kugel GE, Fontana MD, Handerek J, Lahlou S, Carabatosnedelec C (1989) Raman-scattering in PbZr1−x Ti x O3 single-crystals with low Ti content and a study of the Ti influence. J Phys 1(12):2257–2268

    Google Scholar 

  29. Eremkin VV, Smotrakov VG, Tsikhotskii ES, Aleshin VA, Fesenko EG (1987) Preparation of crystals of PbZr1−x Ti x O3 and investigation of their perfection. Inorg Mater 23(2):247–250

    Google Scholar 

  30. Haun MJ, Furman E, Halemane TR, Cross LE (1989) Thermodynamic theory of the lead zirconate-titanate solid-solution system, Part. 4, tilting of the oxygen octahedra. Ferroelectrics 99:55–62

    Article  Google Scholar 

  31. Haun MJ, Furman E, Jang SJ, Cross LE (1989) Thermodynamic theory of the lead zirconate-titanate solid-solution system, Part. 5, theoretical calculations. Ferroelectrics 99:63–86

    Article  Google Scholar 

  32. Haun MJ, Furman E, Jang SJ, Cross LE (1989) Thermodynamic theory of the lead zirconate-titanate solid-solution system, Part. 1, phenomenology. Ferroelectrics 99:13–25

    Article  Google Scholar 

  33. Haun MJ, Furman E, McKinstry HA, Cross LE (1989) Thermodynamic theory of the lead zirconate-titanate solid-solution system, Part. 2, tricritical behavior. Ferroelectrics 99:27–44

    Article  Google Scholar 

  34. Haun MJ, Zhuang ZQ, Furman E, Jang SJ, Cross LE (1989) Thermodynamic theory of the lead zirconate-titanate solid-solution system, Part. 3, Curie constant and 6th-order polarization interaction dielectric stiffness coefficients. Ferroelectrics 99:45–54

    Article  Google Scholar 

  35. Landau LD, Lifshitz EM (1980) Course of theoretical physics. Statistical physics Part 1, vol 5, 3rd edn. Butterworth-Heinemann, London

    Google Scholar 

  36. Devonshire AF (1949) Theory of barium titanate 1. Philos Mag 40(309):1040–1063

    Article  Google Scholar 

  37. Ginzburg VL (1945) On the dielectric properties of ferroelectric (segnette-electric) crystals and barium titanate. Izv Akad Nauk SSSR, Ser Fiz 15:739–751 [J Phys (USSR) 710:107 (1946)]

  38. Amin A, Haun MJ, Badger B, McKinstry H, Cross LE (1985) A phenomenological Gibbs function for the single cell region of the PbZrO3:PbTiO3 solid solution system. Ferroelectrics 65(1):107–130

    Article  Google Scholar 

  39. Haun MJ, Furman E, Jang SJ, McKinstry HA, Cross LE (1987) Thermodynamic theory of PbTiO3. J Appl Phys 62(8):3331–3338

    Article  Google Scholar 

  40. Kottke T, Stalke D (1993) Crystal handling at low-temperatures. J Appl Crystallogr 26:615–619

    Article  Google Scholar 

  41. Hooft R (1998) Collect: data collection software. Nonius B.V., Rotterdam

    Google Scholar 

  42. Otwinowski Z, Minor W, Carter CW Jr, Sweet CW Jr (1997) Methods in enzymology, vol 276. Academic Press, New York

    Google Scholar 

  43. Blessing RH (1995) An empirical correction for absorption anisotropy. Acta Crystallogr Sect A 51:33–38

    Article  Google Scholar 

  44. Blessing RH (1997) Outlier treatment in data merging. J Appl Crystallogr 30:421–426

    Article  Google Scholar 

  45. Spek AL (1990) PLATON, an integrated tool for the analysis of the results of a single crystal structure determination. Acta Cryst A 46:c34

    Google Scholar 

  46. Spek AL (2003) Single-crystal structure validation with the program PLATON. J Appl Cryst 36:7–13

    Article  Google Scholar 

  47. Sheldrick GM (1997) SHELXS-97. University of Göttingen, Germany, Program for Crystal Structure Solution

    Google Scholar 

  48. Sheldrick GM (1997) SHELXL-97, Program for crystal structure refinement. University of Göttingen, Germany

    Google Scholar 

  49. Flack HD (1983) On enantiomorph-polarity estimation. Acta Cryst A39:876–881

    Article  Google Scholar 

  50. Flack HD (2003) Chiral and achiral crystal structures. Helv Chim Acta 86:905–921

    Article  Google Scholar 

  51. Webster AH, MacDonald RC, Bowman WS (1965) The system PbO-ZrO2-TiO2 at 1100 °C. J Can Ceram Soc 34:97–102

    Google Scholar 

  52. Frantti J, Ivanov S, Eriksson S, Rundlof H, Lantto V, Lappalainen J, Kakihana M (2002) Phase transitions of Pb(Zr x Ti1−x )O3 ceramics. Phys Rev B 66(6):064108. doi:10.1103/PhysRevB.66.064108

    Article  Google Scholar 

  53. Frantti J, Lappalainen J, Eriksson S, Ivanov S, Lantto V, Nishio S, Kakihana M, Rundlof H (2001) Neutron diffraction studies of Pb(Zr x Ti1−x )O3 ceramics. Ferroelectrics 261(1):193–198

    Article  Google Scholar 

  54. Frantti J, Lappalainen J, Eriksson S, Lantto V, Nishio S, Kakihana M, Ivanov S, Rundlof H (2000) Neutron diffraction studies of Pb(Zr x Ti1−x )O3 ceramics. Jpn J Appl Phys Part 1 39(9B):5697–5703

    Article  Google Scholar 

  55. Cox DE, Noheda B, Shirane G (2005) Low-temperature phases in PbZr0.52Ti0.48O3: a neutron powder diffraction study. Phys Rev B 71(13):134110. doi:10.1103/PhysRevB.71.134110

    Article  Google Scholar 

  56. Ranjan R, Mishra RSK, Pandey D, Kennedy BJ (2002) Antiferrodistortive phase transition in Pb(Ti0.48Zr0.52)O3: a powder neutron diffraction study. Phys Rev B 65(6):060102. doi:10.1103/PhysRevB.65.060102

    Article  Google Scholar 

  57. Ranjan R, Singh AK, Ragini, Pandey D (2005) Comparison of the Cc and R3c space groups for the superlattice phase of Pb(Zr0.52Ti0.48)O3. Phys Rev B 71(9):092101. doi:10.1103/PhysRevB.71.092101

    Article  Google Scholar 

  58. Glazer AM, Mabud SA, Clarke R (1978) Powder profile refinement of lead zirconate titanate at several temperatures, Part. 1, PbZr0.9Ti0.1O3. Acta Crystallogr Sect B 34:1060–1065

    Article  Google Scholar 

  59. Martin CR, Aksay IA (2003) Topographical evolution of lead zirconate titanate (PZT) thin films patterned by micromolding in capillaries. J Phys Chem B 107(18):4261–4268

    Article  Google Scholar 

  60. Corker DL, Glazer AM, Whatmore RW, Stallard A, Fauth F (1998) A neutron diffraction investigation into the rhombohedral phases of the perovskite series PbZr1−x Ti x O3. J Phys 10(28):6251–6269

    Google Scholar 

  61. Idemoto Y, Yoshikoshi H, Koura N, Takeuchi K, Richardson JW, Loong CK (2004) Relation between the crystal structure, physical properties and ferroelectric properties of Pb(Zr x Ti1−x )O3 (x = 0.40, 0.45, 0.53) ferroelectric material by heat treatment. J Ceram Soc Jpn 112(1):40–45

    Article  Google Scholar 

  62. Joseph J, Vimala TM, Sivasubramanian V, Murthy VRK (2000) Structural investigations on Pb(Zr x Ti1−x )O3 solid solutions using the X-ray Rietveld method. J Mater Sci 35(5):1571. doi:10.1023/A:1004778223721

    Article  Google Scholar 

  63. Kanno I, Kotera H, Matsunaga T, Wasa K (2005) Intrinsic crystalline structure of epitaxial Pb(Zr, Ti)O3 thin films. J Appl Phys 97(7):74101–74105

    Article  Google Scholar 

  64. Leiderman A, Leont’ev IN, Topolov VY, Fesenko OE (1998) X-ray structural and optical studies of PbZrO0.598Ti0.042O3 single crystals in electric fields up to 4×107 V/m. Phys Solid State 40(2):299–301

    Article  Google Scholar 

  65. Liu H, Toraya H (1999) Ab initio structural study on Nb-doped Pb(Zr0.97Ti0.03)O3 ceramic material by synchrotron x-ray diffraction. Jpn J Appl Phys, Part 1 38:104–107

    Article  Google Scholar 

  66. Noheda B, Cox DE, Shirane G, Guo R, Jones B, Cross LE (2000) Stability of the monoclinic phase in the ferroelectric perovskite PbZr1−x Ti x O3. Phys Rev B 63(1):014103

    Article  Google Scholar 

  67. Dong XL, Kojima S (1997) Dielectric and resonance frequency investigations of phase transitions in Nb-doped PZT95/5 and 75/25 ceramics. J Phys 9(11):L171

    Google Scholar 

  68. Moreira RL, Lobo R (1992) Phenomenological study of diffuse phase-transitions. J Phys Soc Jpn 61(6):1992–1995

    Article  Google Scholar 

  69. Rossetti GA, Khachaturyan AG, Akcay G, Ni Y (2008) Ferroelectric solid solutions with morphotropic boundaries: vanishing polarization anisotropy, adaptive, polar glass, and two-phase states. J Appl Phys 103(11):114113. doi:10.1063/1.2930883

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Harvey Amorín for the help in the crystal growth and Dr. Paula Piedade of the Mechanical Engineering Department of the University of Coimbra for the help with electron probe microanalysis. We also wish to acknowledge the financial support from FEDER, QREN, COMPETE and the Portuguese Foundation for Science and Technology (FCT) through the Strategic Project PEst-C/CTM/LA0011/2013 (01-01-2013 to 31-12-2014). José A. Pérez also acknowledges FCT for the financial support through the grant SFRH/BPD/63000/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. R. Senos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez, J.A., Soares, M.R., Paz, F.A.A. et al. Structural and electrical characteristics of rhombohedral lead zirconate titanate single crystals. J Mater Sci 50, 4232–4243 (2015). https://doi.org/10.1007/s10853-015-8974-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8974-4

Keywords

Navigation