Skip to main content
Log in

Composition-dependent structural and magnetic properties of Ni–Mn–Ga alloys studied by ab initio calculations

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We have revealed the influence of composition doping (Ni2+x Mn1−x Ga, Ni2+x MnGa1−x , and Ni2Mn1+x Ga1−x ) on lattice constants and atomic magnetic moments of austenite, 7 M and NM martensite, by ab initio calculations. It is demonstrated that Ni-doping decreases the volume, whereas Mn-doping increases it. The total magnetic moment of the three series of alloys is mainly dominated by their Mn content with little phase-state dependence. The perturbation of the magnetic moments by atom substitution is mainly dominated by the Mn environment. This study is expected to provide information on composition-related structure and magnetic properties of Ni–Mn–Ga alloys that could not be obtained by experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Enkovaara J, Ayuela A, Nordström L, Nieminen RM (2002) Structural, thermal, and magnetic properties of Ni2 Mn Ga. J Appl Phys 91:7798

    Article  Google Scholar 

  2. Entel P, Gruner ME, Adeagbo WA et al (2007) Ab initio modeling of martensitic transformations (MT) in magnetic shape memory alloys. J Magn Magn Mater 310:2761

    Article  Google Scholar 

  3. Zayak AT, Entel P, Enkovaara J, Ayuela A, Nieminen RM (2003) First-principles investigations of homogeneous lattice-distortive strain and shuffles in Ni2MnGa. J Phys 15:159

    Google Scholar 

  4. Blum CGF, Ouardi S, Fecher GH et al (2011) Exploring the details of the martensite–austenite phase transition of the shape memory Heusler compound Mn2NiGa by hard x-ray photoelectron spectroscopy, magnetic and transport measurements. Appl Phys Lett 98:252501

    Article  Google Scholar 

  5. Ayuela A, Enkovaara J, Ullakko K, Nieminen RM (1999) Structural properties of magnetic Heusler alloys. J Phys 11:2017

    Google Scholar 

  6. Cai W, Gao L, Gao ZY (2007) Microstructure and phase transformations in a Ni50Mn29Ga16Gd5 alloy with a high transformation temperature. J Mater Sci 42:9216. doi:10.1007/s10853-007-1893-2

    Article  Google Scholar 

  7. Sozinov A, Likhachev AA, Ullakko K (2002) Crystal structures and magnetic anisotropy properties of Ni–Mn–Ga martensitic phases with giant magnetic-field-induced strain. IEEE Trans Magn 38:2814

    Article  Google Scholar 

  8. Buchelnikov VD, Taskaev SV, Zagrebin MA, Zayak AT, Takagi T (2007) Phase transitions in Ni–Mn–Ga alloys with the account of crystal lattice modulation. J Magn Magn Mater 316:e591

    Article  Google Scholar 

  9. Chulist R, Böhm A, Oertel CG, Skrotzki W (2014) Self-accommodation in polycrystalline 10 M Ni–Mn–Ga martensite. J Mater Sci 49:3951. doi:10.1007/s10853-013-7996-z

    Article  Google Scholar 

  10. Gruner ME, Entel P, Opahle I, Richter M (2008) Ab initio investigation of twin boundary motion in the magnetic shape memory Heusler alloy Ni2MnGa. J Mater Sci 43:3825. doi:10.1007/s10853-007-2291-5

    Article  Google Scholar 

  11. Entel P, Buchelnikov VD, Khovailo VV et al (2006) Modelling the phase diagram of magnetic shape memory Heusler alloys. J Phys D 39:865

    Article  Google Scholar 

  12. Ener S, Neuhaus J, Petry W et al (2012) Effect of temperature and compositional changes on the phonon properties of Ni–Mn–Ga shape memory alloys. Phys Rev B 86:144305

    Article  Google Scholar 

  13. Dong GF, Gao ZY, Zhang XL, Cai W, Sui JH (2011) Phase transition and mechanical properties of constraint-aged Ni–Mn–Ga–Ti magnetic shape memory alloy. J Mater Sci 46:4562. doi:10.1007/s10853-011-5354-6

    Article  Google Scholar 

  14. Chen F, Wang HB, Zheng YF, Cai W, Zhao LC (2005) Effect of Fe addition on transformation temperatures and hardness of NiMnGa magnetic shape memory alloys. J Mater Sci 40:219. doi:10.1007/s10853-005-5712-3

    Article  Google Scholar 

  15. Chernenko VA, Cesari E, Pons J, Seguı C (2000) Phase transformations in rapidly quenched Ni–Mn–Ga alloys. J Mater Res 15:1496

    Article  Google Scholar 

  16. Cong DY, Zetterström P, Wang YD et al (2005) Crystal structure and phase transformation in Ni53Mn25Ga22 shape memory alloy from 20 K to 473 K. Appl Phys Lett 87:111906

    Article  Google Scholar 

  17. Uijttewaal M, Hickel T, Neugebauer J, Gruner M, Entel P (2009) Understanding the phase transitions of the Ni2MnGa magnetic shape memory system from first principles. Phys Rev Lett 102:035702

    Article  Google Scholar 

  18. Segui C, Cesari E (2012) Composition and atomic order effects on the structural and magnetic transformations in ferromagnetic Ni–Co–Mn–Ga shape memory alloys. J Appl Phys 111:043914

    Article  Google Scholar 

  19. Siewert M, Gruner ME, Dannenberg A et al (2011) Designing shape-memory Heusler alloys from first-principles. Appl Phys Lett 99:191904

    Article  Google Scholar 

  20. Zayak AT, Entel P, Enkovaara J, Ayuela A, Nieminen RM (2003) First-principles investigation of phonon softenings and lattice instabilities in the shape-memory system Ni2MnGa. Phys Rev B 68:132402

    Article  Google Scholar 

  21. Righi L, Albertini F, Pareti L, Paoluzi A, Calestani G (2007) Commensurate and incommensurate “5 M” modulated crystal structures in Ni–Mn–Ga martensitic phases. Acta Mater 55:5237

    Article  Google Scholar 

  22. Righi L, Albertini F, Villa E et al (2008) Crystal structure of 7M modulated Ni–Mn–Ga martensitic phase. Acta Mater 56:4529

    Article  Google Scholar 

  23. Chen J, Li Y, Shang J, Xu H (2006) First principles calculations on martensitic transformation and phase instability of Ni–Mn–Ga high temperature shape memory alloys. Appl Phys Lett 89:231921

    Article  Google Scholar 

  24. Rouvière J-L, Lançon F, Hardouin Duparc O (2013) Atomic structures of Si and Ge Σ = 13 [0 0 1] tilt grain boundaries studied by high-resolution electron microscopy and atomistic simulations. Philos Mag. 93:1230

    Article  Google Scholar 

  25. Bai J, Raulot J-M, Zhang Y, Esling C, Zhao X, Zuo L (2011) The effects of alloying element Co on Ni–Mn–Ga ferromagnetic shape memory alloys from first-principles calculations. Appl Phys Lett 98:164103

    Article  Google Scholar 

  26. Si Abdelkader H, Faraoun HI (2012) First-principles calculations of adhesion, bonding and magnetism of the Fe/HfC interface. J Magn Magn Mater 324:4155

    Article  Google Scholar 

  27. Hardouin Duparc O, Larere A, Lezzar B, Khalfallah O, Paidar V (2005) Comparison of the intergranular segregation for eight dilute binary metallic systems in the Σ11′ 332 tilt grain boundary. J Mater Sci 40:3169. doi:10.1007/s10853-005-2680-6

    Article  Google Scholar 

  28. Raulot JM, Fraczkiewicz A, Cordonnier T, Aourag H, Grosdidier T (2008) Atomistic study of the effect of B addition in the FeAl compound. J Mater Sci 43:3867. doi:10.1007/s10853-007-2338-7

    Article  Google Scholar 

  29. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  Google Scholar 

  30. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758

    Article  Google Scholar 

  31. David V (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892

    Article  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  Google Scholar 

  33. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188

    Article  Google Scholar 

  34. Li ZB, Xu N, Zhang YD et al (2013) Composition-dependent ground state of martensite in Ni–Mn–Ga alloys. Acta Mater 61:3858

    Article  Google Scholar 

  35. Hu Q-M, Li C-M, Yang R et al (2009) Site occupancy, magnetic moments, and elastic constants of off-stoichiometric Ni2MnGa from first-principles calculations. Phys Rev B 79:144112

    Article  Google Scholar 

  36. Li C-M, Luo H-B, Hu Q-M, Yang R, Johansson B, Vitos L (2010) First-principles investigation of the composition dependent properties of Ni2+x Mn1−x Ga shape-memory alloys. Phys Rev B 82:024201

    Article  Google Scholar 

  37. Xu N, Raulot JM, Li ZB et al (2014) Composition dependent phase stability of Ni–Mn–Ga alloys studied by ab initio calculations. J Alloys Compd 614:126

    Article  Google Scholar 

  38. Bai J, Raulot JM, Zhang YD, Esling C, Zhao X, Zuo L (2010) Defect formation energy and magnetic structure of shape memory alloys Ni–X–Ga (X = Mn, Fe, Co) by first principle calculation. J Appl Phys 108:064904

    Article  Google Scholar 

  39. Ahuja B, Ahmed G, Banik S, Itou M, Sakurai Y, Barman S (2009) Compton scattering studies of Mn-rich Ni–Mn–Ga ferromagnetic shape memory alloys. Phys Rev B 79:214403

    Article  Google Scholar 

  40. Zenasni H, Faraoun HI, Esling C (2013) First-principle prediction of half-metallic ferrimagnetism in Mn-based full-Heusler alloys with highly ordered structure. J Magn Magn Mater 333:162

    Article  Google Scholar 

  41. Barman S, Chakrabarti A (2008) Comment on “Physical and electronic structure and magnetism of Mn2NiGa: experiment and density-functional theory calculations”. Phys Rev B 77:176401

    Article  Google Scholar 

  42. Ma YQ, Jiang CB, Li Y, Xu HB, Wang CP, Liu XJ (2007) Study of Ni50+x Mn25Ga25−x (x = 2–11) as high-temperature shape-memory alloys. Acta Mater 55:1533

    Article  Google Scholar 

  43. Xu N, Raulot J-M, Li Z et al (2012) Oscillation of the magnetic moment in modulated martensites in Ni2MnGa studied by ab initio calculations. Appl Phys Lett 100:084106

    Article  Google Scholar 

  44. Lázpita P, Barandiarán JM, Gutiérrez J, Feuchtwanger J, Chernenko VA, Richard ML (2011) Magnetic moment and chemical order in off-stoichiometric Ni–Mn–Ga ferromagnetic shape memory alloys. New J Phys 13:033039

    Article  Google Scholar 

  45. Sokolovskiy VV, Buchelnikov VD, Zagrebin MA, Entel P, Sahoo S, Ogura M (2012) First-principles investigation of chemical and structural disorder in magnetic Ni2Mn1+x Sn1−x Heusler alloys. Phys Rev B 86:134418

    Article  Google Scholar 

  46. Sanjay S, Rawat R, Esakki Muthu S et al (2012) Spin-valve-like magnetoresistance in Mn2NiGa at room temperature. Phys Rev Lett 109:246601

    Article  Google Scholar 

  47. Enkovaara J, Heczko O, Ayuela A, Nieminen RM (2003) Coexistence of ferromagnetic and antiferromagnetic order in Mn-doped Ni2MnGa. Phys Rev B 67:212405

    Article  Google Scholar 

  48. Galanakis I, Şaşıoğlu E (2011) Structural-induced antiferromagnetism in Mn-based full Heusler alloys: the case of Ni2MnAl. Appl Phys Lett 98:102514

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the 863 Program of China (Grant No. 2015AA034101), the National Natural Science Foundation of China (Grant No. 51431005 and 51301036), the 111 Program of China (Grant No. B07015), The Program for Liaoning Innovative Research Team in University (Grant No. LT2013007), Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120042110021), The Fundamental Research Funds for the Central Universities of China (Grant No. N130110001 and N130523001), and the Natural Science Foundation of Hebei Province (No. E2013501089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, N., Raulot, J.M., Li, Z.B. et al. Composition-dependent structural and magnetic properties of Ni–Mn–Ga alloys studied by ab initio calculations. J Mater Sci 50, 3825–3834 (2015). https://doi.org/10.1007/s10853-015-8951-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8951-y

Keywords

Navigation