Skip to main content
Log in

Synthesis and characterization of a charm-bracelet-type poly(N-vinylcarbazole)–C60 double-cable polymer

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A charm-bracelet-type poly(N -vinylcarbazole) (PVK)–fullerene (C60) donor–acceptor double-cable polymer was synthesized. The covalent attachment of C60 to PVK was confirmed by 1H NMR and FT-IR spectra. Elemental analysis results provided the information that one C60 molecule was present for every seven N-vinylcarbazole units of the polymer corresponding to a fullerene content of 34.76 wt%. The UV–Visible absorption and cyclic voltammetry data indicated that PVK–C60 retained the electronic properties of both PVK and C60. Density functional theory calculations were carried out to determine the LUMO and HOMO energy levels of PVK–C60. The occurrence of photoinduced electron transfer from PVK to C60 was confirmed by photoluminescence techniques. The positioning of the energy levels of PVK–C60 suggests that there is a great scope for achieving a highly efficient molecular heterojunction solar cell with a high open-circuit voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3
Scheme 4
Fig. 8

Similar content being viewed by others

References

  1. Chen G, Seo J, Yang C, Prasad PN (2013) Review: nanochemistry and nanomaterials for photovoltaics. Chem Soc Rev 42:8304–8338

    Article  Google Scholar 

  2. Zhang Q, Uchaker E, Candelaria SL, Cao G (2013) Review: nanomaterials for energy conversion and storage. Chem Soc Rev 42:3127–3171

    Article  Google Scholar 

  3. Chen JT, Hsu CS (2011) Review: conjugated polymer nanostructures for organic solar cell applications. Polym Chem 2:2707–2722

    Article  Google Scholar 

  4. Brabec CJ, Sariciftci NS, Hummelen JC (2001) Review: plastic solar cells. Adv Funct Mater 11:15–26

    Article  Google Scholar 

  5. Ruoff RS, Kadish KM, Boulas P, Chen ECM (1995) The relationship between the electron affinities and half-wave reduction potentials of fullerenes, aromatic hydrocarbons and metal complexes. J Phys Chem 99:8843–8850

    Article  Google Scholar 

  6. Yusoff ARBM, Lee SJ, Kim HP, Shneider FK, Silva WJD, Jang J (2014) 8.91% Power conversion efficiency for polymer tandem solar cells. Adv Funct Mater 24:2240–2247

    Article  Google Scholar 

  7. Roncali J (2005) Review: linear π-conjugated systems derivatized with C60-fullerene as molecular heterojunctions for organic photovoltaics. Chem Soc Rev 34:483–495

    Article  Google Scholar 

  8. Cravino A, Sariciftci NS (2003) Organic electronics: molecules as bipolar conductors. Nat Mater 2:360–361

    Article  Google Scholar 

  9. Mozer AJ, Sariciftci NS (2006) Review: conjugated polymer photovoltaic devices and materials. C R Chimie 9:568–577

    Article  Google Scholar 

  10. Cravino A (2007) Review: conjugated polymers with tethered electron-accepting moieties as ambipolar materials for photovoltaics. Poly Int 56:943–956

    Article  Google Scholar 

  11. Miyanishi S, Zhang Y, Hashimoto K, Tajima K (2012) Controlled synthesis of fullerene-attached poly(3-alkylthiophene)-based copolymers for rational morphological design in polymer photovoltaic devices. Macromolecules 45:6424–6437

    Article  Google Scholar 

  12. Lanzi M, Paganin L, Errani F (2012) Synthesis, characterization and photovoltaic properties of a new thiophene-based double-cable polymer with pendent fullerene group. Polymer 53:2134–2145

    Article  Google Scholar 

  13. Tan Z, Hou J, He Y, Zhou E, Yang C, Li Y (2007) Synthesis and photovoltaic properties of a donor-acceptor double-cable polythiophene with high content of C60 pendant. Macromolecules 40:1868–1873

    Article  Google Scholar 

  14. He Y, Hou J, Tan Z, Li Y (2010) Synthesis and photovoltaic properties of polythiophene derivatives with side chains containing C60 end group. J Appl Polym Sci 115:532–539

    Article  Google Scholar 

  15. Thomas RN (1994) Acid catalysed fullerenation of carbazole polymer. J Polym Sci Part A 32:2727–2737

    Article  Google Scholar 

  16. Chen Y, Huang ZE, Cai RF (1996) The synthesis and characterization of C60 chemically modified poly(N-vinylcarbazole). J Polym Sci Part B 34:631–640

    Article  Google Scholar 

  17. Gholamkhass B, Peckham TJ, Holdcroft S (2010) Poly(3-hexylthiophene) bearing pendant fullerenes: aggregation versus self-organization. Polym Chem 1:708–719

    Article  Google Scholar 

  18. Zhang F, Svensson M, Andersson MR, Maggini M, Bucella S, Menna E, Inganä O (2001) Soluble polythiophenes with pendant fullerene groups as double cable materials for photodiodes. Adv Mater 13:1871–1874

    Article  Google Scholar 

  19. Chen M, Li M, Wang H, Qu S, Zhao X, Xie L, Yang S (2013) Side-chain substitution of poly(3-hexylthiophene) (P3HT) by PCBM via postpolymerization: an intramolecular hybrid of donor and acceptor. Polym Chem. 4:550–557

    Article  Google Scholar 

  20. Czichy M, Wagner P, Grzadziel L, Krzywiecki M, Szwajca A, Lapkowski M, Zak J, Officer DL (2014) Electrochemical and photoelectronic studies on C60-pyrrolidine-functionalised poly(terthiophene). Electrochim Acta 141:51–58

    Article  Google Scholar 

  21. Li M, Xu P, Yang J, Yang S (2010) Donor-π-acceptor double-cable polythiophenes bearing fullerene pendant with tunable donor/acceptor ratio: a facile postpolymerization. J Mater Chem 20:3953–3960

    Article  Google Scholar 

  22. Piotrowski P, Zarebska K, Skompska M, Kaim A (2014) Electrodeposition and properties of donor-acceptor double-cable polythiophene with high content of pendant fulleropyrrolidine. Electrochim Acta 148:145–152

    Article  Google Scholar 

  23. Lav TX, Tran-Van F, Aubert PH, Chevrot C (2012) Elaboration and characterization of donor-acceptor polymer through electropolymerization of fullerene substituted N-alkylcarbazole. Synth Met 162:1923–1929

    Article  Google Scholar 

  24. Berton N, Fabre-Francke I, Bourrat D, Chandezon F, Sadki S (2009) Poly(bisthiophene-carbazole-fullerene) double-cable polymer as new donor-acceptor material: preparation and electrochemical and spectroscopic characterization. J Phys Chem B 113:14087–14093

    Article  Google Scholar 

  25. Grazulevicius JV, Strohriegl P, Pielichowski J, Pielichowsk K (2003) Review: carbazole-containing polymers: synthesis, properties and applications. Prog Polym Sci 28:1297–1353

    Article  Google Scholar 

  26. Davidge H (1959) Poly-N-vinylcarbazole. II. Preparation, moulding and dielectric properties. J Appl Chem 9:553–560

    Article  Google Scholar 

  27. Chapiro A, Hardy G (1962) Radiochemical polymerization of N-vinylcarbazole in liquid and solid phase. J Chim Phys Phys Chim Biol 59:993–998

    Google Scholar 

  28. Tazuke S (1973) Initiation of photopolymerization by charge transfer interactions. Pure Appl Chem 34:329–352

    Article  Google Scholar 

  29. Atmaca L, Kayihan I, Yagci Y (2000) Photochemically and thermally induced radical promoted cationic polymerization using allyl phosphonium salts. Polymer 41:6035–6041

    Article  Google Scholar 

  30. Ohmori Y, Kajii H, Sawatani T, Ueta H, Yoshino K (2001) Enhancement of electroluminescence utilizing confined energy transfer for red light emission. Thin Solid Films 393:407–411

    Article  Google Scholar 

  31. Wang G, Yuan C, Yu H, Wei Y (1995) Importance of poly(N-vinylcarbazole) dopant to poly(3-octylthiophene) electroluminescence. J Appl Phys 78:2679–2683

    Article  Google Scholar 

  32. Hu B, Yang Z, Karasz FE (1994) Electroluminescence of pure poly(N-vinylcarbazole) and its blends with a multiblock copolymer. J Appl Phys 76:2419–2422

    Article  Google Scholar 

  33. Zhang C, Seggern HV, Pakbaz K, Kraabel P, Schmidt HW, Heeger AJ (1994) Blue electroluminescent diodes utilizing blends of poly(p-phenylenevinylene) in poly(9-vinylcarbazole). Synth Met 62:35–40

    Article  Google Scholar 

  34. Liang C, Li W, Hong Z, Liu X, Peng J, Liu L, Lu Z, Xie M, Liu Z, Wu J, Zhao D (1997) Energy transfer process from polymer to rare earth complexes. Synth Met 91:151–154

    Article  Google Scholar 

  35. Zheng H, Zhang R, Wu F, Tian W, Chen J (1999) Photoluminescence and electroluminescence properties of coumarin-uria/poly(N-vinylcarbazole) blends. Synth Met 100:291–295

    Article  Google Scholar 

  36. Wang G, Qian S, Xu J, Wang W, Liu X, Lu X, Li F (2000) Enhanced photovoltaic response of PVK/C60 composite films. Phys B 279:116–119

    Article  Google Scholar 

  37. Wang Y, Herron N (1992) Photoconductivity of CdS nanocluster-doped polymers. Chem Phys Lett 200:71–75

    Article  Google Scholar 

  38. West DP, Rahn MD, Im C, Bassler H (2000) Hole transport through chromophores in a photorefractive polymer composite based on poly(N-vinylcarbazole). Chem Phys Lett 326:407–412

    Article  Google Scholar 

  39. Zhang Y, Spencer CA, Ghosal S, Casstevens MK, Burzynski R (1994) Thiapyrylium dye sensitization of photorefractivity in a polymer composite. Appl Phys Lett 64:1908–1910

    Article  Google Scholar 

  40. Gunter P, Huingnard JP (1998) Photorefractive materials and their applications. Springer, Berlin

    Google Scholar 

  41. Ling QD, Lim SL, Song Y, Zhu CX, Chan DSH, Kang ET, Neoh KG (2007) Nonvolatile polymer memory devices based on bistable electrical switching in a thin film of poly(N-vinylcarbazole) with covalently bonded C60. Langmuir 23:312–319

    Article  Google Scholar 

  42. Shirota Y, Kakuta T, Kanega H, Mikawa H (1985) Rectification and photovoltaic properties of a schottky barrier cell using electrochemically-doped poly(N-vinylcarbazole). J Chem Soc Chem Commun 17:1201–1202

    Article  Google Scholar 

  43. Kim HS, Kim CH, Ha CS, Lee JK (2001) Organic solar cell devices based on PVK/porphyrin system. Synth Met 117:289–291

    Article  Google Scholar 

  44. Ikeda N, Miyasaka T (2005) A solid-state dye-sensitized photovoltaic cell with a poly(N-vinylcarbazole) hole transporter mediated by an alkali iodide. Chem Commun 14:1886–1888

    Article  Google Scholar 

  45. Kaune G, Wang W, Metwalli E, Ruderer M, Robner R, Roth SV, Muller-Buschbaum P (2008) Layered TiO2: PVK nanocomposites thin films for photovoltaic applications. Eur Phys J E 26:73–79

    Article  Google Scholar 

  46. Davenas J, Barlier V, Legare VB, Canut B, Rybak A, Slazak A, Jung J (2010) Hybrid polymer/TiO2 films by in situ hydrolysis condensation of titanium alkoxide precursors for photovoltaic transparent windows. Phys Status Solidi A 207:1627–1630

    Article  Google Scholar 

  47. Tria MC, Liao KS, Alley N, Curran S, Advincula R (2011) Electrochemically crosslinked surface-grafted PVK polymer brushes as a hole transport layer for organic photovoltaics. J Mater Chem 21:10261–10264

    Article  Google Scholar 

  48. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA (2009) Gaussian 09, revision C.01. Gaussian, Inc, Wallingford, CT

    Google Scholar 

  49. Olah GA, Bucsi I, Lambert C, Aniszfeld R, Trivedi NJ, Sensharma DK, Prakash GKS (1991) Polyarenefullerenes, C60(H–Ar)n, obtained by acid-catalyzed fullerenation of aromatics. J Am Chem Soc 113:9387–9388

    Article  Google Scholar 

  50. Watanabe A, Kawato T, Matsuda M, Ito O (1997) Formation of semiconducting polymer film by laser CVD. J Photopolym Sci Technol 10:197–204

    Article  Google Scholar 

  51. Penwell RC, Prest WM Jr (1978) Orientation in poly(N-vinylcarbazole) by melt extrusion. Polymer 19:537–541

    Article  Google Scholar 

  52. Ballav N (2005) Some experimental results on poly(N-vinylcarbazole)-buckminsterfullerene (C60) nanocomposites system. Mater Lett 59:3419–3422

    Article  Google Scholar 

  53. Ji HX, Hu JS, Wan LJ, Tang QX, Hu WP (2008) Controllable crystalline structure of fullerene nanorods and transport properties of an individual nanorod. J Mater Chem 18:328–332

    Article  Google Scholar 

  54. Leach S, Vervloet M, Despres A, Breheret E, Hare JP, Dennis TJ, Kroto HW, Taylor R, Walton DRM (1992) Electronic spectra and transitions of the fullerene C60. Chem Phys 160:451–466

    Article  Google Scholar 

  55. Hirsch A, Soi A, Karfunhel HR (1992) Titration of C60: a method for the synthesis of organofullerenes. Angew Chem Int Ed 31:766–768

    Article  Google Scholar 

  56. Nowacki B, Iamazaki E, Cirpan A, Karasz F, Atvars TDZ, Akcelrud L (2009) Highly efficient polymer blends from a polyfluorene derivative and PVK for LEDs. Polymer 50:6057–6064

    Article  Google Scholar 

  57. Beheshtian J, Peyghan AA, Bagheri Z (2012) Theoretical investigation of C60 fullerene functionalization with tetrazine. Comput Theor Chem 992:164–167

    Article  Google Scholar 

  58. Wang TL, Yang CH, Shieh YT, Yeh AC (2009) Synthesis of CdSe-Poly(N-vinylcarbazole) nanocomposites by atom transfer radical polymerization for potential optoelectronic applications. Macromol Rapid Commun 30:1679–1683

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial assistance from the Department of Science and Technology Govt. of India, New Delhi for this research project (SR/S2/CMP-58/06). They are grateful to Dr. V. Hakkim, Central Leather Research Institute, Chennai for helping with the DFT calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramiah Saraswathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramar, A., Saraswathi, R. Synthesis and characterization of a charm-bracelet-type poly(N-vinylcarbazole)–C60 double-cable polymer. J Mater Sci 50, 3740–3749 (2015). https://doi.org/10.1007/s10853-015-8936-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8936-x

Keywords

Navigation