Skip to main content
Log in

Superplasticity and superplastic-like flow in cubic zirconia with silica

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Experiments were conducted at temperatures from 1573 to 1748 K to evaluate the flow properties and the potential for achieving superplasticity in an 8 mol% Y2O3-stabilized cubic ZrO2 (termed 8Y-CSZ) containing 5 wt% colloidal SiO2. Tests were conducted under constant strain rate conditions and under creep conditions at constant stress. The stress exponent was determined as ~1.8, and the activation energy for creep was measured as ~600–670 kJ mol−1. The results show that the presence of an amorphous second phase is effective in limiting grain growth. A maximum superplastic elongation of more than 500 % was recorded at a testing temperature of 1703 K. An analysis of the results suggests that the flow mechanism is associated with interface-controlled diffusion creep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pearson CE (1934) The viscous properties of extruded eutectic alloys of lead-tin and bismuth-tin. J Inst Metals 54:111–124

    Google Scholar 

  2. Langdon TG (2009) Seventy-five years of superplasticity: historic developments and new opportunities. J Mater Sci 44:5998–6010. doi:10.1007/s10853-009-3780-5

    Article  Google Scholar 

  3. Chokshi AH, Mukherjee AK, Langdon TG (1993) Superplasticity in advanced materials. Mater Sci Eng R 10:237–274

    Article  Google Scholar 

  4. Maehara Y, Langdon TG (1990) Superplasticity in ceramics. J Mater Sci 25:2275–2286. doi:10.1007/BF00638018

    Article  Google Scholar 

  5. Kawasaki M, Langdon TG (2007) Principles of superplasticity in ultrafine-grained materials. J Mater Sci 42:1782–1796. doi:10.1007/s10853-006-0954-2

    Article  Google Scholar 

  6. Kawasaki M, Langdon TG (2014) Review: achieving superplasticity in metals processed by high-pressure torsion. J Mater Sci 49:6487–6496. doi:10.1007/s10853-014-8204-5

    Article  Google Scholar 

  7. Ahmed MMI, Langdon TG (1977) Exceptional ductility in the superplastic Pb-62 Pct Sn eutectic. Metall Trans A 8A:1832–1833

    Article  Google Scholar 

  8. Higashi K, Ohnishi T, Nakatani Y (1985) Superplastic behavior of commercial aluminum bronze. Scripta Metall 19:821–823

    Article  Google Scholar 

  9. Ma Y, Langdon TG (1994) Factors influencing the exceptional ductility of a superplastic Pb-62 pct Sn alloy. Metall Mater Trans A 25A:2309–2311

    Article  Google Scholar 

  10. Barnes AJ (2007) Superplastic forming: 40 years and still growing. J Mater Eng Perform 16:440–454

    Article  Google Scholar 

  11. Wakai F, Sakaguchi S, Matsuno Y (1986) Superplasticity of yttria-stabilized tetragonal ZrO2 polycrystals. Adv Ceram Mater 1:259–263

    Google Scholar 

  12. Langdon TG (1982) The mechanical properties of superplastic materials. Metall Trans A 13A:689–701

    Article  Google Scholar 

  13. Nieh TG, Tomasello CM, Wadsworth J (1990) Dynamic grain growth in superplastic Y-TZP and Al2O3/YTZ. In: Materials research society symposium proceedings, Materials Research Society, Warrendale, 196, 343–348

  14. Chen I-W, Xue LA (1990) Development of superplastic structural ceramics. J Amer Ceram Soc 73:2585–2609

    Article  Google Scholar 

  15. Hines JA, Ikuhara Y, Chokshi AH, Sakuma T (1998) The influence of trace impurities on the mechanical characteristics of a superplastic 2 mol% yttria stabilized zirconia. Acta Mater 46:5557–5568

    Article  Google Scholar 

  16. Chokshi AH (2003) Diffusion, diffusion creep and grain growth characteristics of nanocrystalline and fine-grained monoclinic, tetragonal and cubic zirconia. Scripta Mater 48:791–796

    Article  Google Scholar 

  17. Scott HG (1975) Phase relationship in the zirconia–yttria system. J Mater Sci 10:1527–1535. doi:10.1007/BF01031853

    Article  Google Scholar 

  18. Lee IG, Chen I-W (1988) Sintering and grain growth in tetragonal and cubic zirconia. In: Sintering ′87–Proceedings of the international science of sintering symposium, Elsevier Applied Science, Tokyo, 340–345

  19. Yoshizawa Y, Sakuma T (1989) Evolution of microstructure and grain growth in ZrO2–Y2O3 alloys. ISIJ Int 29:746–752

    Article  Google Scholar 

  20. Chaim R, Heuer A (1986) Phase equilibration in ZrO2–Y2O3 alloys by liquid-film migration. J Amer Ceram Soc 69:243–248

    Article  Google Scholar 

  21. Yoshizawa Y, Sakuma T (1990) Role of grain-boundary glass phase on the superplastic deformation of tetragonal zirconia polycrystal. J Amer Ceram Soc 73:3069–3073

    Article  Google Scholar 

  22. Lin Y-J, Angelini P, Mecartney ML (1990) Microstructural and chemical influences of silicate grain-boundary phases in yttria-stabilized zirconia. J Amer Ceram Soc 73:2728–2735

    Article  Google Scholar 

  23. Gust M, Goo G, Wolfenstine J, Mecartney ML (1993) Influence of amorphous grain boundary phases on the superplastic behavior of 3 mol% yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP). J Amer Ceram Soc 76:1681–1690

    Article  Google Scholar 

  24. Sakuma T, Yoshizawa Y (1994) Superplasticity of ceramics with glass phase. Mater Sci Forum 170–172:369–378

    Article  Google Scholar 

  25. Wakai F, Kondo N, Ogawa H, Nagano T, Tsurekawa S (1997) Amorphous grain boundary in superplastic ceramics. Mater Sci Forum 243–245:337–344

    Article  Google Scholar 

  26. Shirooyeh M, Tanju S, Garay JE, Langdon TG (2009) Characterization of a potential superplastic zirconia-spinel nanocomposite processed by spark plasma sintering. Advanced processing and manufacturing technologies for structural and multifunctional materials III. Wiley, Hoboken, pp 31–36

    Google Scholar 

  27. Shirooyeh M, Garay JE, Langdon TG (2014) Characteristics of a zirconia-spinel composite processed by a current-activated pressure-assisted densification method. Ceram Eng Sci Proc 35:151–159

    Article  Google Scholar 

  28. Kajihara K, Yoshizawa Y, Sakuma T (1995) The enhancement of superplastic flow in tetragonal zirconia polycrystals with SiO2-doping. Acta Metall Mater 43:1235–1242

    Article  Google Scholar 

  29. Sharif AA, Mecartney ML (2003) Superplasticity in cubic yttria-stabilized zirconia with intergranular silica. Acta Mater 51:1633–1639

    Article  Google Scholar 

  30. Martin MC, Mecartney ML (2003) Grain boundary ionic conductivity of yttrium stabilized zirconia as a function of silica content and grain size. Solid State Ionics 161:67–79

    Article  Google Scholar 

  31. Langdon TG (1994) An evaluation of the strain contributed by grain boundary sliding in superplasticity. Mater Sci Eng A174:225–230

    Article  Google Scholar 

  32. Berbon MZ, Sørensen OT, Langdon TG (1996) A simple technique for the preparation of tensile specimens of yttria-stabilized zirconia. Mater Lett 27:211–214

    Article  Google Scholar 

  33. Dillon RP, Sosa SS, Mecartney ML (2004) Achieving tensile superplasticity in 8 mol% Y2O3 cubic stabilized ZrO2 through the addition of intergranular silica. Scripta Mater 50:1441–1444

    Article  Google Scholar 

  34. Yavari P, Langdon TG (1982) A constant stress tensile creep machine for very low stresses. J Test Eval 10:174–178

    Article  Google Scholar 

  35. Thompson AW (1972) Calculation of true volume grain diameter. Metallography 5:366–369

    Article  Google Scholar 

  36. Mecartney ML (2000) Grain boundary engineering of highly deformable ceramics. In: Materials Research Society Symposium Proceedings, Materials Research Society, Warrendale, 601, 81–91

  37. Cottom BA, Mayo MJ (1996) Fracture toughness of nanocrystalline ZrO2-3 mol% Y2O3 determined by vickers indentation. Scripta Mater 34:809–814

    Article  Google Scholar 

  38. Fukuhara M, Sanpei A (1994) High temperature-elastic moduli and internal dilational and shear frictions of fused quartz. Japan J Appl Phys 33:2890–2893

    Article  Google Scholar 

  39. Lucas JP (1995) Determining fracture toughness of vitreous silica glass. Scripta Metall Mater 32:743–748

    Article  Google Scholar 

  40. Langdon TG (1982) Fracture processes in superplastic materials. Metal Sci 16:175–183

    Article  Google Scholar 

  41. Langdon TG (1994) A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall Mater 42:2437–2443

    Article  Google Scholar 

  42. Mackenzie JK (1958) Second paper on statistics associated with the random disorientation of cubes. Biometrika 45:229–240

    Article  Google Scholar 

  43. Kwon N-H, Kim C-H, Song HS, Lee H-L (2001) Synthesis and properties of cubic zirconia–alumina composite by mechanical alloying. Mater Sci Eng A299:185–194

    Article  Google Scholar 

  44. Navarro LM, Recio P, Jurado JR, Duran P (1995) Preparation and properties evaluation of zirconia-based/Al2O3 composites as electrolytes for solid oxide fuel cell systems. J Mater Sci 30:1949–1960. doi:10.1007/BF00353015

    Article  Google Scholar 

  45. Donzel L, Roberts SG (2000) Microstructure and mechanical properties of cubic zirconia (8YSZ)/SiC nanocomposites. J Eur Ceram Soc 20:2457–2462

    Article  Google Scholar 

  46. Cutler RA, Reynolds JR, Jones A (1992) Sintering and characterization of polycrystalline monoclinic, tetragonal, and cubic zirconia. J Amer Ceram Soc 75:2173–2183

    Article  Google Scholar 

  47. Hiraga K, Morita K, Kim B-N, Hoshida H (2010) Fracture toughness of a silica-doped cubic zirconia (8Y-CSZ). Mater Sci Forum 638–642:3846–3851

    Article  Google Scholar 

  48. Sharif AA, Imamura PH, Mitchell TE, Mecartney ML (1998) Control of grain growth using intergranular silicate phases in cubic yttria stabilized zirconia. Acta Mater 46:3863–3872

    Article  Google Scholar 

  49. Van Riet C, De Meester P (1985) Cavitation in a dilute superplastic Zn-0.5 % Al alloy–a cascade mechanism for cavity generation. Scripta Metall 19:795–800

    Article  Google Scholar 

  50. Chokshi AH, Langdon TG (1989) The influence of rolling direction on the mechanical behavior and formation of cavity stringers in the superplastic Zn-22 % Al alloy. Acta Metall 37:715–723

    Article  Google Scholar 

  51. Yousefiani A, Earthman JC, Mohamed FA (1998) Formation of cavity stringers during superplastic deformation. Acta Mater 46:3557–3570

    Article  Google Scholar 

  52. Ma Y, Langdon TG (1993) An examination of the implications of void growth in submicrometer and nanocrystalline structures. Mater Sci Eng A168:225–230

    Article  Google Scholar 

  53. Ma Y, Langdon TG (1994) A critical assessment of flow and cavity formation in a superplastic yttria-stabilized zirconia. Acta Metall Mater 42:2753–2761

    Article  Google Scholar 

  54. Ma Y, Langdon TG (1996) The characteristics of cavitation in superplastic metals and ceramics. Metall Mater Trans A 27A:873–878

    Article  Google Scholar 

  55. Kawasaki M, Horita Z, Langdon TG (2009) Microstructural evolution in high purity aluminum processed by ECAP. Mater Sci Eng A524:143–150

    Article  Google Scholar 

  56. Xu C, Horita Z, Langdon TG (2011) Microstructural evolution in an aluminum solid solution alloy processed by ECAP. Mater Sci Eng A528:6059–6065

    Article  Google Scholar 

  57. Wongsa-Ngam J, Kawasaki M, Langdon TG (2012) Achieving homogeneity in a Cu-Zr alloy processed by high-pressure torsion. J Mater Sci 47:7782–7788. doi:10.1007/s10853-012-6587-8

    Article  Google Scholar 

  58. Helmick L, Dillon SJ, Gerdes K, Gemmen R, Rohrer GS, Seetharaman S, Salvador PA (2011) Crystallographic characteristics of grain boundaries in dense yttria-stabilized zirconia. Int J Appl Ceram Technol 8:1218–1228

    Article  Google Scholar 

  59. Langdon TG (2002) Creep at low stresses: an evaluation of diffusion creep and Harper-Dorn creep as viable creep mechanism. Metall Mater Trans A 33A:249–259

    Article  Google Scholar 

  60. Langdon TG (2006) Grain boundary sliding revisited: developments in sliding over four decades. J Mater Sci 41:597–609. doi:10.1007/s10853-006-6476-0

    Article  Google Scholar 

  61. Woodford DA (1969) Strain-rate sensitivity as a measure of ductility. Trans ASM 62:291–293

    Google Scholar 

  62. Langdon TG (1977) The relationship between strain rate sensitivity and ductility in superplastic materials. Scripta Metall 11:997–1000

    Article  Google Scholar 

  63. Tekeli S, Davies TJ (2011) A comparative study of superplastic deformation and cavitation behaviour in 3 and 8 mol% yttria-stabilized zirconia. Mater Sci Eng A297:168–175

    Google Scholar 

  64. Hwang C-MJ, Chen I-W (1990) Effect of a liquid phase on superplasticity of 2-mol%-Y2O3-stabilized tetragonal zirconia polycrystals. J Amer Ceram Soc 73:1626–1632

    Article  Google Scholar 

  65. Domínguez-Rodríguez A, Gómez-García D, Wakai F (2013) High temperature plasticity in yttria stabilised tetragonal zirconia polycrystals (Y-TZP). Int Mater Rev 58:399–417

    Article  Google Scholar 

  66. Sakka Y, Oishi Y, Ando K, Morita S (1991) Cation interdiffusion and phase stability in polycrystalline tetragonal ceria–zirconia–hafnia solid solution. J Amer Ceram Soc 74:2610–2614

    Article  Google Scholar 

  67. Sharif AA, Mecartney ML (2004) Superplasticity in cubic yttria stabilized zirconia with 10 wt% alumina. J Eur Ceram Soc 24:2041–2047

    Article  Google Scholar 

  68. French JD, Zhao J, Harmer MP, Chan HM, Miller GA (1994) Creep of duplex microstructure. J Amer Ceram Soc 77:2857–2865

    Article  Google Scholar 

  69. Berbon MZ, Langdon TG (1999) An examination of the flow process in superplastic yttria-stabilized tetragonal zirconia. Acta Mater 47:2485–2495

    Article  Google Scholar 

  70. Domínguez-Rodríguez A, Lagerlöf KPD, Heuer AH (1986) Plastic deformation and solid solution hardening of Y2O3-stabilized ZrO2. J Amer Ceram Soc 69:281–284

    Article  Google Scholar 

  71. McClellan KJ, Heuer AH, Kubin LP (1996) Localized yielding during high temperature deformation of Y2O3-fully-stabilized cubic ZrO2− single crystals. Acta Mater 44:2651–2662

    Article  Google Scholar 

  72. Domínguez-Rodríguez A, Jiménez-Melendo M, Castaing J (1995) Plasticity of zirconia. In: Bradt RC, Brookes CA, Routbort JL (eds) Plastic deformation of ceramics. Plenum, New York, pp 31–41

    Chapter  Google Scholar 

  73. Baither D, Baufeld B, Messerschmidt U (1995) Defect formation during plastic deformation of Y2O3-partially-stabilized ZrO2− single crystals. J Amer Ceram Soc 78:1375–1379

    Article  Google Scholar 

  74. Chen T, Mohamed FA, Mecartney ML (2006) Threshold stress superplastic behavior and dislocation activity in a three-phase alumina-zirconia-mullite composite. Acta Mater 54:4415–4426

    Article  Google Scholar 

  75. Arzt E, Ashby MF, Verrall RA (1983) Interface controlled diffusional creep. Acta Metall 31:1977–1989

    Article  Google Scholar 

  76. Ghosh S, Kilo M, Borchardt G, Chokshi AH (2009) Diffusion and creep in silica-doped tetragonal zirconia. J Amer Ceram Soc 92:3004–3013

    Article  Google Scholar 

  77. Charit I, Chokshi AH (2001) Experimental evidence for diffusion creep in the superplastic 3 mol% yttria-stabilized tetragonal zirconia. Acta Mater 49:2239–2249

    Article  Google Scholar 

  78. Coble RL (1963) A model for boundary diffusion controlled creep in polycrystalline metals. J Appl Phys 34:1679–1682

    Article  Google Scholar 

  79. Ashby MF (1969) On interface-reaction control of Nabarro–Herring creep and sintering. Scripta Metall 3:837–842

    Article  Google Scholar 

  80. Greenwood GW (1970) The possible effects on diffusion creep of some limitation of grain boundaries as vacancy sources and sinks. Scripta Metall 4:171–174

    Article  Google Scholar 

  81. Burton B (1972) Interface reaction controlled diffusional creep: a consideration of grain boundary dislocation climb sources. Mater Sci Eng 10:9–14

    Article  Google Scholar 

  82. Andrades L, Bravo-León A, Jiménez-Melendo M, Domínguez-Rodríguez A (1995) High temperature deformation of fine-grained yttria-stabilized zirconia reinforced with Al2O3 platelets. J Phys III 5:1841–1847

    Google Scholar 

  83. Bravo-León A, Jiménez-Melendo M, Domínguez-Rodríguez A, Chokshi AH (1996) The role of a threshold stress in the superplastic deformation of fine-grained yttria-stabilized zirconia polycrystals. Scripta Mater 34:1155–1160

    Article  Google Scholar 

  84. Bravo-León A, Jiménez-Melendo M, Domínguez-Rodríguez A (1996) High temperature plastic deformation at very low stresses of fine-grained Y2O3-partioally stabilized ZrO2. Scripta Mater 35:551–555

    Article  Google Scholar 

  85. Domínguez-Rodríguez A, Bravo-León A, Ye JD, Jiménez-Melendo M (1998) Grain size and temperature dependence of the threshold stress for superplastic deformation in yttria-stabilized zirconia polycrystals. Mater Sci Eng A 247:97–101

    Article  Google Scholar 

  86. Jiménez-Melendo M, Domínguez-Rodríguez A, Bravo-León A (1998) Superplastic flow of fine-grained yttria-stabilized zirconia polycrystals: constitutive equation and deformation mechanisms. J Amer Ceram Soc 81:2761–2776

    Article  Google Scholar 

  87. Li Y, Langdon TG (1997) A simple procedure for estimating threshold stresses in the creep of metal matrix composites. Scripta Mater 36:1457–1460

    Article  Google Scholar 

  88. Li Y, Langdon TG (1999) A unified interpretation of threshold stresses in the creep and high strain rate superplasticity of metal matrix composites. Acta Mater 47:3395–3403

    Article  Google Scholar 

  89. Berbon MZ, Langdon TG (1997) The variation of strain rate with stress in superplastic zirconia. Mater Sci Forum 243–245:357–362

    Article  Google Scholar 

  90. Owen DM, Chokshi AH (1998) The high temperature mechanical characteristics of superplastic 3 mol% yttria stabilized zirconia. Acta Mater 46:667–679

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation of the United States in part under NSF Grants DMR-0207197 and 0606063 (RPD, PHI, MLM) and in part under NSF Grant DMR-1160966 (MS, TGL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence G. Langdon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirooyeh, M., Dillon, R.P., Sosa, S.S. et al. Superplasticity and superplastic-like flow in cubic zirconia with silica. J Mater Sci 50, 3716–3726 (2015). https://doi.org/10.1007/s10853-015-8932-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8932-1

Keywords

Navigation