Skip to main content
Log in

Effect of glycidylisobutyl–POSS on the thermal degradation of the epoxy resin

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, polyhedral oligomeric silsesquioxane glycidylisobutyl–POSS was dispersed in an epoxy resin (DGEBA) using ultrasound, and the thermal degradation was investigated by the Flynn–Wall–Ozawa and Criado methods using thermogravimetric analysis. The TEM analysis indicated higher polyhedral oligomeric silsesquioxane (POSS) dispersion in spherical shape. The POSS dispersion was associated with the formation of micelles as a result of their hybrid character. The addition of POSS did not change the degradation of the resin until ~380 °C, and above this temperature, increase in the thermal stability was observed. The kinetic results revealed that the addition of POSS decreased E a values primarily to 10 % POSS and did not affect the mechanism of degradation for all contents. The reduction in E a was associated with the easier breaking of bonds at the interface of the DGEBA/POSS nanocomposite. The thermodynamic parameters suggested an increased “degree of arrangement” for the formation of an active complex during the degradation process and corroborate the lower E a values. The results suggest that the addition of POSS is able to cause an effect of thermal barrier at higher temperatures without affecting the homogeneity of the microstructure of the cured resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fu BX, Namani M, Lee A (2003) Influence of phenyl-trisilanol polyhedral silsesquioxane on properties of epoxy network glasses. Polymer 44:7739–7747

    Article  Google Scholar 

  2. Liu Y, Zheng S, Nie K (2005) Epoxy nanocomposites with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane. Polymer 46:12016–12025

    Article  Google Scholar 

  3. Ni Y, Zheng S (2005) Epoxy Resin Containing Octamaleimidophenyl Polyhedral Oligomeric Silsesquioxane. Macromol Chem Phys 206:2075–2083

    Article  Google Scholar 

  4. Marini A, Alzari V, Monticelli O, Pojman JA, Caria G (2007) Polymeric Nanocomposites Containing Polyhedral Oligomeric Silsesquioxanes Prepared via Frontal Polymerization. J Polym Sci, Part A: Polym Chem 45:4514–4521

    Article  Google Scholar 

  5. Zhang Z, Gu A, Liang G, Ren P, Xie J, Wang X (2007) Thermo-oxygen degradation mechanisms of POSS/epoxy nanocomposites. Polym Deg Stab 92:1986–1993

    Article  Google Scholar 

  6. Pellice SA, Fasce DP, Williams RJ (2003) Properties of epoxy networks derived from the reaction of diglycidyl ether of bisphenol A with polyhedral oligomeric silsesquioxanes bearing OH-functionalized organic substituents. J Polym Sci, Part B: Polym Phys 41:1451–1461

    Article  Google Scholar 

  7. Pistor V, Barbosa LG, Soares BG, Mauler RS (2012) Relaxation phenomena in the glass transition of epoxy/N-phenylaminopropyl e POSS nanocomposites. Polymer 53:5798–5805

    Article  Google Scholar 

  8. Liu H, Zheng S, Nie K (2005) Morphology and Thermomechanical Properties of Organic–Inorganic Hybrid Composites Involving Epoxy Resin and an Incompletely Condensed Polyhedral Oligomeric Silsesquioxane. Macromolecules 38:5088–5097

    Article  Google Scholar 

  9. Ni Y, Zheng S, Nie K (2004) Morphology and thermal properties of inorganic–organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes. Polymer 45:5557–5568

    Article  Google Scholar 

  10. Pistor V, Soares BG, Mauler RS (2012) Influence of Different Percentages of N-Phenylaminopropyl—POSS on the Degradation Kinetic of Epoxy Resin. Polym Comp 33:1437–1444

    Article  Google Scholar 

  11. Pistor V, Ornaghi FG, Ornaghi HL Jr, Zattera AJ (2012) Degradation Kinetic of Epoxy Nanocomposites Containing Different Percentage of Epoxycyclohexyl—POSS. Polym Comp 33:1224–1232

    Article  Google Scholar 

  12. Deng J, Polidan JT, Hottle JR, Farmer-Creely CE, Viers BD, Esker AR (2002) Polyhedral Oligomeric Silsesquioxanes: A New Class of Amphiphiles at the Air/Water Interface. J Am Chem Soc 124:15194–15195

    Article  Google Scholar 

  13. Deng J, Hottle JR, Polidan JT, Kim H-J, Farmer-Creely CE, Viers BD, Esker AR (2004) Polyhedral Oligomeric Silsesquioxane Amphiphiles: isotherm and Brewster Angle Microscopy Studies of Trisilanolisobutyl-POSS at the Air/Water Interface. Langmuir 20:109–115

    Article  Google Scholar 

  14. Zeng K, Zheng S (2007) Nanostructures and Surface Dewettability of Epoxy Thermosets Containing Hepta(3,3,3-trifluoropropyl) Polyhedral Oligomeric Silsesquioxane-Capped Poly(ethylene Oxide). J Phys Chem B 111:13919–13928

    Article  Google Scholar 

  15. Ozawa TA (1965) New Method of Analyzing Thermogravimetric Data. Soc Jpn 38:1881–1886

    Article  Google Scholar 

  16. Ozawa TA (1966) A New Method of Quantitative Differential Thermal Analysis. Bull Chem Soc Jpn 39:2071–2085

    Article  Google Scholar 

  17. Flynn JH, Wall LA (1966) General Treatment of the Thermogravimetry of Polymers. J Res Natl Bur Stand 70A:487–523

    Article  Google Scholar 

  18. Poletto M, Pistor V, Zeni M, Zattera AJ (2011) Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes. Polym Deg Stab 96:679–685

    Article  Google Scholar 

  19. Doyle CD (1961) Kinetic analysis of thermogravimetric data. J Appl Polym Sci 5:285–292

    Article  Google Scholar 

  20. Criado JM, Malek J, Ortega A (1989) Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim Acta 147:377–385

    Article  Google Scholar 

  21. Núñez L, Fraga F, Núñez MR, Villanueva M (2000) Thermogravimetric study of the decomposition process of the system BADGE (n = 0)/1,2 DCH. Polymer 41:4635–4641

    Article  Google Scholar 

  22. Núñez L, Villanueva M, Núñez MR, Rial BJ (2004) Influence of an Epoxy Reactive Diluent on the Thermal Degradation Process of the System DGEBA n = 0/1,2 DCH. J App Polym Sci 92:1199–1207

    Article  Google Scholar 

  23. Pérez-maqueda LA, Criado JMJ (2000) The Accuracy of Senum and Yang’s Approximations to the Arrhenius Integral. J Therm Anal Calorim 60:909–915

    Article  Google Scholar 

  24. Eyring H (1935) The Activated Complex in Chemical Reactions. J Chem Phys 3:107–115

    Article  Google Scholar 

  25. Vlaev LT, Markovska IG, Lyubchev LA (2003) Non-isothermal kinetics of pyrolysis of rice husk. Thermochim Acta 406:1–7

    Article  Google Scholar 

  26. Genieva SD, Vlaev LT, Atanassov AN (2010) Atanassov, Study of the thermooxidative degradation kinetics of poly(tetrafluoroethene) using iso-conversional calculation procedure. J Therm Anal Calorim 99:551–561

    Article  Google Scholar 

  27. Turmanova S, Genieva S, Vlaev L (2011) Kinetics of Nonisothermal Degradation of Some Polymer Composites: change of Entropy at the Formation of the Activated Complex from the Reagents. J. Thermodynamics 2011:1–10

    Article  Google Scholar 

  28. Pistor V, Puziski L, Zattera AJ (2014) Influence of Different Concentrations of Glycidylisobutyl-POSS on the Glass Transition of the Cured Epoxy Resin. J App Polym Sci 132:41453–41461

    Google Scholar 

  29. Montserrat S, Málek J, Colomer P (1999) Thermal degradation kinetics of epoxy-anhydride resins: II. Influence of a reactive diluents. Thermochim Acta 336:65–71

    Article  Google Scholar 

  30. Pistor V, Ornaghi FG, Ornaghi HL Jr, Zattera AJ (2012) Dynamic mechanical characterization of epoxy/epoxycyclohexyl–POSS nanocomposites. Mater Sci Eng, A 532:339–345

    Article  Google Scholar 

  31. Ornaghi HL Jr, Pistor V, Zattera AJ (2012) Effect of the epoxycyclohexyl polyhedral oligomeric silsesquioxane content on the dynamic fragility of an epoxy resin. J Non-Cryst Solids 358:427–432

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge UCS, CAPES, and CNPq for providing scholarships and financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vinicios Pistor or Ademir J. Zattera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pistor, V., Puziski, L. & Zattera, A.J. Effect of glycidylisobutyl–POSS on the thermal degradation of the epoxy resin. J Mater Sci 50, 3697–3705 (2015). https://doi.org/10.1007/s10853-015-8930-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8930-3

Keywords

Navigation