Skip to main content

Advertisement

Log in

Effect of crystallization conditions on the physical properties of a two-layer glassine paper/polyhydroxybutyrate structure

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polyhydroxybutyrate (PHB) is a hydrophobic, biodegradable biopolymer, which can be a potential substitute for currently used synthesized polymers in the packaging industry. However, its utility is often limited by its brittleness and poor mechanical properties, mainly because of its through-thickness fractures. In this study, we laminate and crystallize PHB on glassine paper by hot-pressing and tune the crystallization conditions to minimize cracking. Glassine paper is impermeable to PHB granules and allows the formation of a distinguishable bilayer of PHB. It was found that glassine paper serves as a soft substrate, which increases the number of nucleation sites of the spherulites and prevents growth of the cracks in the neighboring PHB layer. Quenching the films to the crystallization temperature was found to minimize cracking enough to reduce the water vapor transmission rate to \(15\)\(25\,{\mathrm{g}}\,{\mathrm{m}}^{-2}\,{\mathrm{day}}^{-1}\), irrespective of the crystallization temperature; however, the mechanical properties improved only at the crystallization temperatures below 77 °C, perhaps due to the local stress in the existing cracks at higher crystallization temperatures. The optimum crystallization conditions were found to be quenching the film in an ice bath and crystallization at room temperature, by which we obtained mechanical strength and Young’s modulus of \(80\,\text {MPa}\) and \(2.5\,\text {GPa}\), respectively, and a water vapor transmission rate of \(20\,\text {g}\,\text {m}^{-2}\,\text {day}^{-1}\). Our results suggest a simple and cost-effective method to produce PHB films with enhanced mechanical and barrier properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abe H, Matsubara I, Doi Y (1995) Physical properties and enzymatic degradability of polymer blends of bacterial poly[(r)-3-hydroxybutyrate] and poly[(r, s)-3-hydroxybutyrate] stereoisomers. Macromolecules 28(4):844–853

    Article  Google Scholar 

  2. Alamo RG, Mandelkern L (1991) Crystallization kinetics of random ethylene copolymers. Macromolecules 24:6480–6493

    Article  Google Scholar 

  3. An Y, Dong L, Mo Z, Liu T, Feng Z (1998) Nonisothermal crystallization kinetics of poly (\(\beta \)-hydroxybutyrate). J Polym Sci Part B 36:1305–1312

    Article  Google Scholar 

  4. Avrami M (1940) Kinetics of phase change. ii transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224

    Article  Google Scholar 

  5. Barham PJ (1984) Nucleation behaviour of poly-3-hydroxybutyrate. J Mater Sci 19(12):3826–3834

    Article  Google Scholar 

  6. Barham PJ, Keller A (1986) The relationship between microstructure and mode of fracture in polyhydroxybutyrate. J Polym Sci 24(1):69–77

    Article  Google Scholar 

  7. Barham PJ, Keller A, Otun EL, Holmes PA (1984) Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. J Mater Sci 19(9):2781–2794

    Article  Google Scholar 

  8. Barham PJ, Barker P, Organ SJ (1992) Physical properties of poly(hydroxybutyrate) and copolymers of hydroxybutyrate and hydroxyvalerate. FEMS Microbiol Rev 103(2–4):289–298

    Article  Google Scholar 

  9. Barud HS, L SJ, Santos DB, Crespi MS, Ribeiro CA, Messaddeq Y, Ribeiro SJL (2011) Bacterial cellulose/poly(3-hydroxybutyrate) composite membranes. Carbohydr Polym 83(3):1279–1284

    Article  Google Scholar 

  10. Bessel TJ, Hull D, Shortall JB (1974) The effect of polymerization conditions and crystallinity on the mechanical properties and fracture of spherulitic nylon 6. J Mater Sci 10(7):1127–1136

    Article  Google Scholar 

  11. Bloembergen S, Holden DA, Hamer GK, Bluhm TL, Marchessault RH (1986) Studies of composition and crystallinity of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Macromolecules 19(11):2865–2871

    Article  Google Scholar 

  12. Bourbonnais R, Marchessault RH (2010) Application of polyhydroxyalkanoate granules for sizing of paper. Biomacromolecules 11(4):989–993

    Article  Google Scholar 

  13. Corre Y, Bruzaud S, Audic J, Grohens Y (2012) Morphology and functional properties of commercial polyhydroxyalkanoates: a comprehensive and comparative study. Polym Test 31(2):226–235

    Article  Google Scholar 

  14. Cyras VP, Soledad CM, Mauri AN, Analia V (2007) Biodegradable double-layer films based on biological resources: polyhydroxybutyrate and cellulose. J Appl Polym Sci 106(2):749–756

    Article  Google Scholar 

  15. Cyras VP, Soledad CM, Analia V (2009) Biocomposites based on renewable resource: acetylated and non acetylated cellulose cardboard coated with polyhydroxybutyrate. Polymer 50(26):6274–6280

    Article  Google Scholar 

  16. de Koning GJM, Scheeren AHC, Lemstra PJ, Peeters M, Reynaers H (1994) Crystallization phenomena in bacterial poly[(r)-3-hydroxybutyrate]: 3. toughening via texture changes. Polymer 35(21):4598–4605

    Article  Google Scholar 

  17. Diez-Pascual AM, Diez-Vicente AL (2014) Zno-reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites with antimicrobial function for food packaging. ACS Appl Mater Interfaces 6(12):9822–9834

    Article  Google Scholar 

  18. El-Hadi A, Schnabel R, Straube E, Muller G, Henning S (2002) Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) phas and their blends. Polym Test 21(6):665–675

    Article  Google Scholar 

  19. Follain N, Chappey C, Dargent E, Chivrac F, Cretois R, Marais S (2014) Structure and barrier properties of biodegradable polyhydroxyalkanoate films. J Phys Chem C 118(12):6165–6177

    Article  Google Scholar 

  20. Galeski A, Piorkowska E (1983a) Localized volume deficiencies as an effect of spherulite growth. i. the two-dimensional case. J Polym Sci 21(8):1299–1312

    Google Scholar 

  21. Galeski A, Piorkowska E (1983b) Localized volume deficiencies as an effect of spherulite growth. ii. the three-dimensional case. J Polym Sci 21(8):1313–1322

    Google Scholar 

  22. Gozzano M, Tomasi G, Scandola M (1997) X-ray investigation on melt-crystallized bacterial poly(3-hydroxybutyrate). Macromol Chem Phys 198(1):71–80

    Article  Google Scholar 

  23. Gozzano M, Focarete ML, Rieke LC, Scandola M (2000) Bacterial poly(3-hydroxybutyrate): an optical microscopy and microfocus X-ray diffraction study. Biomacromolecules 1(4):604–608

    Article  Google Scholar 

  24. Gumel AM, Annuar MSM, Chisti Y (2013) Recent advances in the production, recovery and applications of polyhydroxyalkanoates. J Polym Environ 21(2):580–605

    Article  Google Scholar 

  25. Hobbs JK, Barham PJ (1998a) The fracture of poly(hydroxybutyrate) part ii fracture mechanics study after annealing. J Mater Sci 33(10):2515–2518. doi:10.1023/A:1004336715288

    Article  Google Scholar 

  26. Hobbs JK, Barham PJ (1998b) The fracture of poly(hydroxybutyrate) part iii fracture morphology in thin films and bulk systems. J Mater Sci 34(34):4831–4844. doi:10.1023/A:1004659726586

    Google Scholar 

  27. Hobbs JK, McMaster TJ, Miles MJ, Barham PJ (1996) Cracking in spherulites of poly(hydroxybutyrate). Polymer 37(15):3241–3246

    Article  Google Scholar 

  28. Iordanskii A, Kamaev PP, Hanggi UJ (2000) Modification via preparation for poly(3-hydroxybutyrate) films: water-transport phenomena and sorption. J Appl Polym Sci 76(4):475–480

    Article  Google Scholar 

  29. Jacquel N, Lo C, Wu H (2007) Solubility of polyhydroxyalkanoates by experiment and thermodynamic correlations. J Am Inst Chem Eng 53(10):2704–2714

    Article  Google Scholar 

  30. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735–764

    Article  Google Scholar 

  31. Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6(1):1–8

    Article  Google Scholar 

  32. Lin Y, Fan Y (2012) Substrate effect on the crystallization of isotactic polypropylene. J Appl Polym Sci 125(1):233–245

    Article  Google Scholar 

  33. Martinez-Salazar J, Sanchez-Cuesta M, Barham PJ, Keller A (1989) Thermal expansion and spherulite cracking in 3-hydroxybutyrate/3-hydroxyvalerate copolymers. J Mater Sci Lett 8(17):490–492

    Article  Google Scholar 

  34. Miguel O, Iruin JJ (1999) Water transport properties in poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biopolymers. J Appl Polym Sci 73(4):455–468

    Article  Google Scholar 

  35. Miguel O, Fernandez-Berridi MJ, Iruin JJ (1997) Survey on transport properties of liquids, vapors, and gases in biodegradable poly(3-hydroxybutyrate) (phb). J Appl Polym Sci 64(9):1849–1859

    Article  Google Scholar 

  36. Miguel O, Egiburu JJ, Iruin JJ (2001) Blends of bacterial poly(3-hydroxybutyrate) with synthetic poly(3-hydroxybutyrate) and poly(epichlorohydrin): transport properties of carbon dioxide and water vapour. Polymer 42(3):953–962

    Article  Google Scholar 

  37. Nurkhamidah S, Woo EM (2012) Correlation of crack patterns and ring bands in spherulites of low molecular weight poly(l-lactic acid). Colloid Polym Sci 290(3):275–288

    Article  Google Scholar 

  38. Organ SJ, Barham PJ (1991) Nucleation, growth and morphology of poly(hydroxybutyrate) and its copolymers. J Mater Sci 26(5):1368–1374. doi:10.1007/BF00544479

    Article  Google Scholar 

  39. Owen AJ, Heinzel J, Skrbic Z, Divjakovic V (1992) Crystallization and melting behaviour of phb and phb/hv copolymer. Polymer 33(7):1563–1567

    Article  Google Scholar 

  40. Parra DF, Fusaro J, Gaboardi F, Rosa DS (2006) Influence of poly (ethylene glycol) on the thermal, mechanical, morphological, physicalechemical and biodegradation properties of poly(3-hydroxybutyrate). Polym Degrad Stab 91(9):1954–1959

    Article  Google Scholar 

  41. Pizzoli M, Scandola M, Ceccorulli G (1994) Crystallization and melting behaviour of phb and phb/hv copolymer. Macromolecules 27(17):4755–4761

    Article  Google Scholar 

  42. Prakalathan K, Mohanty S, Nayak SK (2014) Reinforcing effect and isothermal crystallization kinetics of poly(3-hydroxybutyrate) nanocomposites blended with organically modified montmorillonite. Polym Compos 35(5):999–1012

    Article  Google Scholar 

  43. Rajan R, Sreekumar PA, Joseph K, Skrifvars M (2011) Thermal and mechanical properties of chitosan reinforced polyhydroxybutyrate composites. J Appl Polym Sci 124(4):3357–3362

    Article  Google Scholar 

  44. Ruka DR, Simon GP, Dean KM (2013) In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohydr Polym 92(2):1717–1723

    Article  Google Scholar 

  45. Shogren R (1997) Water vapor permeability of biodegradable polymers. J Environ Polym Degrad 5(2):91–95

    Article  Google Scholar 

  46. Siparsky GL, Voorhees KJ, Dorgan JR, Schilling K (1997) Water transport in polylactic acid (pla), pla/polycaprolactone copolymers, and pla/polyethylene glycol blends. J Environ Polym Degrad 5(3):125–136

    Google Scholar 

  47. Srithep Y, Ellingham T, Peng J, Sabo R, Clemons C, Turng PSL (2013) Melt compounding of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/nanofibrillated cellulose nanocomposites. Polym Degrad Stab 98(8):1439–1449

    Article  Google Scholar 

  48. Starkweat HW, Brooks RE (1959) Effect of spherulites on the mechanical properties of nylon 66. J Appl Polym Sci 1(2):236–239

    Article  Google Scholar 

  49. Suttiwijitpukdee N, Sato H, Zhang J, Hashimoto T (2011a) Effects of intermolecular hydrogen bondings on isothermal crystallization behavior of polymer blends of cellulose acetate butyrate and poly(3-hydroxybutyrate). Macromolecules 44:3467–3477

    Article  Google Scholar 

  50. Suttiwijitpukdee N, Sato H, Zhang J, Hashimoto T, Ozaki Y (2011b) Intermolecular interactions and crystallization behaviors of biodegradable polymer blends between poly (3-hydroxybutyrate) and cellulose acetate butyrate studied by dsc, ft-ir, and waxd. Polymer 52(2):461–471

    Article  Google Scholar 

  51. Suttiwijitpukdee N, Sato H, Unger M, Ozaki Y (2012) Effects of hydrogen bond intermolecular interactions on the crystal spherulite of poly(3-hydroxybutyrate) and cellulose acetate butyrate blends: Studied by ft-ir and ft-nir imaging spectroscopy. Macromolecules 45(6):2736–2748

    Article  Google Scholar 

  52. Thellen C, M C, Froio D, Auerbach M, Wirsen C, Ratto JA (2008) A processing, characterization and marine biodegradation study of melt-extruded polyhydroxyalkanoate (pha) films. J Polym Environ 16(1):1–11

    Article  Google Scholar 

  53. Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose synthesized by acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5(4):249–261

    Article  Google Scholar 

  54. Way JL, Atkinson JR, Nutting J (1974) The effect of spherulite size on the fracture morphology of polypropylene. J Mater Sci 9(2):293–299. doi:10.1007/BF00550954

    Article  Google Scholar 

  55. Weihua K, He Y, Askawa N, Inoue Y (2004) Effect of lignin particles as a nucleating agent on crystallization of poly(3-hydroxybutyrate). J Appl Polym Sci 94(6):2466–2474

    Article  Google Scholar 

  56. World Packaging Organization (2008) Market statistics and future trends in global packaging. http://www.worldpackaging.org

  57. Zhang K, Mohanty AK, Misra M (2012) Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl Mater Interfaces 4(6):3091–3101

    Article  Google Scholar 

Download references

Acknowledgements

Financial supports from an Industrial Research Chair funded by FPInnovations and NSERC and from NSERCs Innovative Green Wood Fibre Products Network are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theo G. M. van de Ven.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 930 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, S., van de Ven, T.G.M. Effect of crystallization conditions on the physical properties of a two-layer glassine paper/polyhydroxybutyrate structure. J Mater Sci 50, 3686–3696 (2015). https://doi.org/10.1007/s10853-015-8929-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8929-9

Keywords

Navigation