Skip to main content
Log in

Underwater discharge plasma-induced coating of poly(acrylic acid) on polypropylene fiber

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An underwater diaphragm discharge generated at atmospheric pressure by high voltage pulses was used for plasma polymerization of acrylic acid and simultaneously for the deposition of polymer coating on polypropylene multifilament fibers. The deposition process was monitored by Fourier transform infrared spectroscopy in combination with scanning electron microscopy. Possible schemes of polymerization are suggested also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Inagaki N (1996) Plasma surface modification and plasma polymerization. Tecnomic Publishing, Lancaster

    Google Scholar 

  2. Poncin-Epaillard F, Chevet B, Brosse JC (1994) Modification of isotactic polypropylene by a cold plasma or an electron beam and grafting of the acrylic acid onto these activated polymers. J Appl Polym Sci 53:1291–1306

    Article  Google Scholar 

  3. Sellin N, Sinezio J, Campos C (2003) Surface composition analysis of PP films treated by corona discharge. Mater Res 6:163–166

    Article  Google Scholar 

  4. Dogue ILJ, Mermilliod N, Boiron G, Staveris S (1995) Improvement of polypropylene film adhesion in multilayers by various chemical surface modifications. Int J Adhes Adhes 15:205–210

    Article  Google Scholar 

  5. Dogue ILJ, Forch R, Mermilliod N (1995) Grafting of acrylic acid onto polypropylene—comparison of two pretreatments: γ-irradiation and argon plasma. Nucl Instr Methods Phys Res B 105:164–167

    Article  Google Scholar 

  6. Winnik FM, Morneau A, Mika AM, Childs RF, Roig A, Molins E (1998) Polyacrylic acid pore-filled microporous membranes and their use in membrane-mediated synthesis of nanocrystalline ferrihydrite. Can J Chem 76:10–17

    Article  Google Scholar 

  7. Gao JZ (2006) A novel technique for wasterwater treatment by contact glow discharge electrolysis. Pak J Biol Sci 9:323–329

    Article  Google Scholar 

  8. Khlustova AV, Maximov AI, Subbotkina IN (2010) The electrical discharge action on the wastewater for cleaning. High Temp Mater Proc 14:185–191

    Article  Google Scholar 

  9. Dors M, Metel E, Mizeraczyk J (2007) Phenol degradation in water by pulsed streamer corona discharge and Fenton reaction. Int J Plasma Environ Sci Technol 1:76–81

    Google Scholar 

  10. Lu QF, Yu J, Gao JZ (2006) Degradation of 2,4-dichlorophenol by using glow discharge electrolysis. J Hazard Mater 136:526–531

    Article  Google Scholar 

  11. Joshi R, Schulze RD, Meyer-Plath A, Friedrich JF (2008) Selective surface modification of poly(propylene) with OH and COOH groups using liquid-plasma systems. Plasma Process Polym 5:695–707

    Article  Google Scholar 

  12. Maximov A (2007) Physics, chemistry and application of the AC diaphragm discharge and related discharges in electrolyte solutions. Contrib Plasma Phys 47:111–118

    Article  Google Scholar 

  13. Teslenko VS, Drozhzhin AP, Sankin GN (2006) The autocyclic ring breakdown in electrolyte with induced collapse of bubbles. Lett J Technol Phys 32:24–31 (in Russian)

    Google Scholar 

  14. Khlyustova AV, Manakhov AM, Maksimov AI (2009) A scenario of development of low-voltage “underwater” discharge. Surf Eng Appl Electrochem 45:485–488

    Article  Google Scholar 

  15. Nikiforov AY, Leys C (2007) Influence of capillary geometry and applied voltage on hydrogen peroxide and OH radical formation in AC underwater electrical discharges. Plasma Sources Sci Technol 16:273–280

    Article  Google Scholar 

  16. Yang P, Deng JY, Tai YW (2003) Confined photo-catalytic oxidation: a fast surface hydrophilic modification method for polymeric materials. Polymer 44:7157–7164

    Article  Google Scholar 

  17. Malik MA, Ahmed M, Rehman E, Naheed R, Ghaffar A (2003) Synthesis of superabsorbent copolymers by pulsed corona discharges in water. Plasma Polym 8:271–279

    Article  Google Scholar 

  18. Siaratta V, Vohrer U, Hegemann D, Muller M, Oehr C (2003) Plasma functionalization of polypropylene with acrylic acid. Surf Coat Technol 174–175:805–810

    Article  Google Scholar 

  19. Morent R, De Geyter N, Leys C, Gengembre L, Payen E (2008) Comparison between XPS- and FTIR-analysis of plasma-treated polypropylene film surfaces. Surf Interface Anal 40:597–600

    Article  Google Scholar 

  20. Kirwan LJ, Fawell PD, van Brounswijk W (2003) In situ FTIR-ATR examination of poly(acrylic acid) adsorbed onto hematite at low pH. Langmuir 19:5802–5807

    Article  Google Scholar 

  21. Choi HS, Kim YS, Zhang Y, Tang S, Myung SW, Shin BS (2004) Plasma-induced graft co-polymerization of acrylic acid onto polyurethane surface. Surf Coat Technol 182:55–64

    Article  Google Scholar 

  22. Gornukhina OV, Shikova TG, Ageeva TA, Titov VA, Golubchikov OA (2008) Post-plasma graft co-polymerization of polypropylene and acrylic acid. Chem Chem Technol 51:75–79 (in Russian)

    Google Scholar 

  23. Alavi MHS, Habibi M, Amrollahi R, Afshar Taromi F (2011) A study of plasma polymerization of acrylic acid using APF plasma focus device. J Fusion Energy 30:184–189

    Article  Google Scholar 

  24. Golubchikov OA, Gornukhina OV, Vershinina IA, Ageeva TA, Titov VA (2007) The polypropylene materials of medical purpose modificated by acetylsalicylic acid. Chem Chem Technol 50:65–68 (in Russian)

    Google Scholar 

Download references

Acknowledgements

This research has been supported by the Project R&D center for low-cost plasma and nanotechnology surface modifications CZ.1.05/2.1.00/03.0086 funded by European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Khlyustova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khlyustova, A., Galmiz, O., Zahoran, M. et al. Underwater discharge plasma-induced coating of poly(acrylic acid) on polypropylene fiber. J Mater Sci 50, 3504–3509 (2015). https://doi.org/10.1007/s10853-015-8913-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8913-4

Keywords

Navigation