Skip to main content
Log in

Synthesis, self-assembly, and formation of polymer vesicle hydrogels of thermoresponsive copolymers

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of N-isopropylacrylamide and methacrylate derivative random copolymers with various contents of cholic acid groups in the side chain are synthesized by free radical polymerization. These thermoresponsive random copolymers can organize themselves into large vesicles in water upon heating, accompanied by gradual phase transitions from transparent polymer solutions to turbid solutions and then to white hydrogels. The white vesicle hydrogels display non-elastic deformation and shrink. They can re-dissolve directly upon cooling. Further, X-ray diffraction results indicate the existence of crystalline regions on the vesicle membrane. Based on these results, the possible formation mechanism of the fiber-layer structures on the vesicle membrane is also discussed. It is noteworthy that the gel-forming temperatures of the resultant copolymers below 37 °C which indicate the vesicle gels may find applications as injectable implant systems for sustained drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Discher DE, Eisenberg A (2002) Polymer vesicles. Science 297:967–973

    Article  Google Scholar 

  2. Lee JS, Feijen J (2012) Polymersomes for drug delivery: design, formation and characterization. J Control Release 161:473–483

    Article  Google Scholar 

  3. Discher BM, Won YY, Ege DS, Lee JCM, Bates FS, Discher DE, Hammer DA (1999) Polymersomes: tough vesicles made from diblock copolymers. Science 284:1143–1146

    Article  Google Scholar 

  4. Discher BM, Bermudez H, Hammer DA, Discher DE, Won YY, Bates FS (2002) Cross-linked polymersome membranes: vesicles with broadly adjustable properties. J Phys Chem B 106:2848–2854

    Article  Google Scholar 

  5. Katz JS, Eisenbrown KA, Johnston ED, Kamat NP, Rawson J, Therien MJ, Burdick JA, Hammer DA (2012) Soft biodegradable polymersomes from caprolactone-derived polymers. Soft Matter 8:10853–10862

    Article  Google Scholar 

  6. Egli S, Nussbaumer MG, Balasubramanian V, Chami M, Bruns N, Palivan C, Meier W (2011) Biocompatible functionalization of polymersome surfaces: a new approach to surface immobilization and cell targeting using polymersomes. J Am Chem Soc 133:4476–4483

    Article  Google Scholar 

  7. Cerritelli S, O’Neil CP, Velluto D, Fontana A, Adrian M, Dubochet J, Hubbell JA (2009) Aggregation behavior of poly(ethylene glycol-bl-propylene sulfide) di- and triblock copolymers in aqueous solution. Langmuir 25:11328–11335

    Article  Google Scholar 

  8. Zhang L, Eisenberg A (1995) Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science 268:1728–1731

    Article  Google Scholar 

  9. Yu K, Eisenberg A (1998) Bilayer morphologies of self-assembled crew-cut aggregates of amphiphilic PS-b-PEO diblock copolymers in solution. Macromolecules 31:3509–3518

    Article  Google Scholar 

  10. Kim H, Kang YJ, Jeong ES, Kang S, Kim KT (2012) Glucose-responsive disassembly of polymersomes of sequence-specific boroxole-containing block copolymers under physiologically relevant conditions. ACS Macro Lett 1:1194–1198

    Article  Google Scholar 

  11. Bailly N, Thomas M, Klumperman B (2012) Poly(N-vinylpyrrolidone)-block-poly(vinyl acetate) as a drug delivery vehicle for hydrophobic drugs. Biomacromolecules 13:4109–4117

    Google Scholar 

  12. Peng B, Liu Y, Shi Y, Li ZB, Chen YM (2012) Thermo-responsive organic–inorganic hybrid vesicles with tunable membrane permeability. Soft Matter 8:12002–12008

    Article  Google Scholar 

  13. Meng FH, Hiemstra C, Engbers GHM, Feijen J (2003) Biodegradable polymersomes. Macromolecules 36:3004–3006

    Article  Google Scholar 

  14. Nardin C, Hirt T, Leukel J, Meier W (2000) Polymerized ABA triblock copolymer vesicles. Langmuir 16:1035–1041

    Article  Google Scholar 

  15. Pietsch C, Mansfeld U, Guerrero-Sanchez C, Hoeppener S, Vollrath A, Wagner M, Hoogenboom R, Saubern S, Thang SH, Becer CR, Chiefari J, Schubert US (2012) Thermo-induced self-assembly of responsive poly (DMAEMA-b-DEGMA) block copolymers into multi- and unilamellar vesicles. Macromolecules 45:9292–9302

    Article  Google Scholar 

  16. Li YT, Lokitz BS, McCormick CL (2006) Thermally responsive vesicles and their structural “locking” through polyelectrolyte complex formation. Angew Chem Int Ed 45:5792–5795

    Article  Google Scholar 

  17. Qin SH, Geng Y, Discher DE, Yang S (2006) Temperature-controlled assembly and release from polymer vesicles of poly(ethylene oxide)-block-poly(N-isopropylacrylamide). Adv Mater 18:2905–2909

    Article  Google Scholar 

  18. Blanazs A, Madsen J, Battaglia G, Ryan AJ, Armes SP (2011) Mechanistic insights for block copolymer morphologies: how do worms form vesicles? J Am Chem Soc 133:16581–16587

    Article  Google Scholar 

  19. Chambon P, Blanazs A, Battaglia G, Armes SP (2012) Facile synthesis of methacrylic ABC triblock copolymer vesicles by RAFT aqueous dispersion polymerization. Macromolecules 45:5081–5090

    Article  Google Scholar 

  20. Du JZ, Tang Q, Lewis AL, Armes SP (2005) pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer. J Am Chem Soc 127:17982–17983

    Article  Google Scholar 

  21. Zhu YQ, Liu L, Du JZ (2013) Probing into homopolymer self-assembly: how does hydrogen bonding influence morphology? Macromolecules 46:194–203

    Article  Google Scholar 

  22. Cha JN, Birkedal H, Euliss LE, Bartl MH, Wong MS, Deming TJ, Stucky D (2003) Spontaneous formation of nanoparticle vesicles from homopolymer polyelectrolytes. J Am Chem Soc 125:8285–8289

    Article  Google Scholar 

  23. Savariar EN, Aathimanikandan SV, Thayumanavan S (2006) Supramolecular assemblies from amphiphilic homopolymers:testing the scope. J Am Chem Soc 128:16224–16230

    Article  Google Scholar 

  24. Shi ZQ, Zhou YF, Yan DY (2008) Facile fabrication of pH-responsive and size-controllable polymer vesicles from a commercially available hyperbranched polyester. Macromol Rapid Commun 29:412–418

    Article  Google Scholar 

  25. Kang SW, Li Y, Park JH, Lee DS (2013) pH-triggered unimer/vesicle-transformable and biodegradable polymersomes based on PEG-b-PCL–grafted poly(β-amino ester) for anti-cancer drug delivery. Polymer 54:102–110

    Article  Google Scholar 

  26. Xu JT, Fu Q, Ren JM, Bryant G, Qiao GG (2013) Novel drug carriers: from grafted polymers to cross-linked vesicles. Chem Commun 49:33–35

    Article  Google Scholar 

  27. Yin HQ, Kang HC, Huh KM, Bae YH (2012) Biocompatible, pH-sensitive AB2 miktoarm polymer-based polymersomes: preparation, characterization, and acidic pH-activated nanostructural transformation. J Mater Chem 22:19168–19178

    Article  Google Scholar 

  28. van Hest JCM, Delnoye DAP, Baars MWPL, van Genderen MHP, Meijer EW (1995) Polystyrene-dendrimer amphiphilic block copolymer with a generation-dependent aggregation. Science 268:1592–1595

    Article  Google Scholar 

  29. del Barrio J, Oriol L, Sánchez C, Serrano JL, Cicco AD, Keller P, Li MH (2010) Self-assembly of linear-dendritic diblock copolymers: from nanofibers to polymersomes. J Am Chem Soc 132:3762–3769

    Article  Google Scholar 

  30. The Merck Index (2001) The solubility of monohydrate form of CA in water is 028 g/L at 15°C, 13th edn. Merck & Co, Inc, Whitehouse Station

  31. Zhu XX, Nichifor M (2002) Polymeric materials containing bile acids. Acc Chem Res 35:539–546

    Article  Google Scholar 

  32. Liu HY, Avoce D, Song ZJ, Zhu XX (2001) N-Isopropylacrylamide copolymers with acrylamide and methacrylamide derivatives of cholic acid: synthesis and characterization. Macromol Rapid Commun 22:675–680

    Article  Google Scholar 

  33. Wang XD, Li CX, Duan YQ, Lu Y (2014) Hydrophobic tetramer structures of cholic acid. Cryst Growth Des 14:23–26

    Article  Google Scholar 

  34. Liu F, Tao GL, Zhuo RX (1993) Synthesis of thermal phase separating reactive polymers and their applications in immobilized enzymes. Polym J 25:561–567

    Article  Google Scholar 

  35. Chem Abstr (1967) 67:11149q

  36. Brown HC (1938) A convenient preparation of volatile acid chlorides. J Am Chem Soc 60:1325–1328

    Article  Google Scholar 

  37. Han CK, Bae YH (1998) Inverse thermally-reversible gelation of aqueous N-isopropylacrylamide copolymer solutions. Polymer 39:2809–2814

    Article  Google Scholar 

  38. Lu Y, Han YQ, Liang JH, Meng HX, Han FL, Wang XD, Li CX (2011) Inverse thermally reversible gelation-based hydrogels: synthesis and characterization of N-isopropylacrylamide copolymers containing deoxycholic acid in the side chain. Polym Chem 2:1866–1871

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank X. X. Zhu (University of Montreal) for helpful advice and Wen Wen (BL14B1 SSRF) for the help of synchrotron radiation measurements. The authors are grateful for the financial support from the National Natural Science Foundation of China (50703018, 51373122) and the Program for New Century Excellent Talents in University (NCET-12-1066).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xudong Wang or Yan Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2455 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Duan, Y., Li, C. et al. Synthesis, self-assembly, and formation of polymer vesicle hydrogels of thermoresponsive copolymers. J Mater Sci 50, 3541–3548 (2015). https://doi.org/10.1007/s10853-015-8911-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8911-6

Keywords

Navigation