Skip to main content
Log in

Highly condensed g-C3N4-modified TiO2 catalysts with enhanced photodegradation performance toward acid orange 7

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A TiO2-based catalyst modified with highly condensed g-C3N4 has been synthesized though a simple vacuum calcination method and applied for the photocatalytic degradation of azo dye acid orange 7 (AO7). The obtained catalyst was thoroughly characterized by an array of analytical techniques, among which X-ray diffraction, Fourier transform infrared spectroscopy, UV–vis diffuse reflectance spectra, and transmission electronic microscopy proved a successfully combination of the two composites. And elemental analysis revealed a C/N ratio close to the theoretical data of g-C3N4, indicating highly condensed g-C3N4 in the composited catalyst. The catalyst showed excellent photocatalytic activity toward degradation of AO7 under both visible and UV light, and in addition it had better photocatalytic performance than that of the catalyst prepared by calcination in air. The high photocatalytic activity could be attributed to two aspects: the suitable band gap positions for g-C3N4/TiO2 composite which could improve the separation efficiency of photo-generated electron–hole pairs and the high condensation degree of g-C3N4 resulting from the vacuum calcination which is advantageous for higher carrier mobility and lower HOMO levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  Google Scholar 

  2. Chen X, Selloni A (2014) Introduction: titanium dioxide (TiO2) nanomaterials. Chem Rev 114:9281–9282

    Article  Google Scholar 

  3. Liu M, He L, Liu X, Liu C, Luo S (2014) Reduced graphene oxide and CdTe nanoparticles co-decorated TiO2 nanotube array as a visible light photocatalyst. J Mater Sci 49:2263–2269. doi:10.1007/s10853-013-7922-4

    Article  Google Scholar 

  4. Henych J, Štengl V, Kormunda M, Mattsson A, Österlund L (2014) Role of bismuth in nano-structured doped TiO2 photocatalyst prepared by environmentally benign soft synthesis. J Mater Sci 49:3560–3571. doi:10.1007/s10853-014-8083-9

    Article  Google Scholar 

  5. Barndõk H, Peláez M, Han C, Platten WE III, Campo P, Hermosilla D, Blanco A, Dionysiou DD (2013) Photocatalytic degradation of contaminants of concern with composite NF-TiO2 films under visible and solar light. Environ Sci Pollut Res 20:3582–3591

    Article  Google Scholar 

  6. Montero-Ocampo C, Gago A, Abadias G, Gombert B, Alonso-Vante N (2012) In situ photoelectrochemical/photocatalytic study of a dye discoloration in a microreactor system using TiO2 thin films. Environ Sci Pollut Res 19:3751–3762

    Article  Google Scholar 

  7. Bumajdad A, Madkour M, Abdel-Moneam Y, El-Kemary M (2014) Nanostructured mesoporous Au/TiO2 for photocatalytic degradation of a textile dye: the effect of size similarity of the deposited Au with that of TiO2 pores. J Mater Sci 49:1743–1754. doi:10.1007/s10853-013-7861-0

    Article  Google Scholar 

  8. Chen X, Cai H, Tang Q, Yang Y, He B (2014) Solar photocatalysts from Gd–La codoped TiO2 nanoparticles. J Mater Sci 49:3371–3378. doi:10.1007/s10853-014-8045-2

    Article  Google Scholar 

  9. Cong Y, Zhang J, Chen F, Anpo M (2007) Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J Phys Chem C 111:6976–6982

    Article  Google Scholar 

  10. Wu Y, Liu H, Zhang J, Chen F (2013) Enhanced photocatalytic activity of nitrogen-doped titania by deposited with gold. J Phys Chem C 113:14689–14695

    Article  Google Scholar 

  11. Khanna A, Shetty VK (2013) Solar photocatalysis for treatment of Acid Yellow-17 (AY-17) dye contaminated water using Ag@TiO2 core–shell structured nanoparticles. Environ Sci Pollut Res 20:5692–5707

    Article  Google Scholar 

  12. Zhang B, Zou W, Zhang J (2014) In situ surface modification of colloidal TiO2 nanoparticles with catechol. Res Chem Intermediat. doi:10.1007/s11164-013-1422-7

    Google Scholar 

  13. Zou W, Zhang JL, Chen F, Anpo M, He DN (2009) A simple approach for preparing a visible-light TiO2 photocatalyst. Res Chem Intermediat 35:717–726

    Article  Google Scholar 

  14. Zheng Y, Liu J, Liang J, Jaroniec M, Qiao SZ (2012) Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ Sci 5:6717–6731

    Article  Google Scholar 

  15. Shiraishi Y, Kanazawa S, Sugano Y, Tsukamoto D, Sakamoto H, Ichikawa S, Hirai T (2014) Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal 4:774–780

    Article  Google Scholar 

  16. Boonprakob N, Wetchakun N, Phanichphant S, Waxler D, Sherrell P, Nattestad A, Chen J, Inceesungvorn B (2014) Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films. J Colloid Interf Sci 417:402–409

    Article  Google Scholar 

  17. Shen J, Yang H, Shen Q, Feng Y, Cai Q (2014) Template-free preparation and properties of mesoporous g-C3N4/TiO2 nanocomposite photocatalyst. CrystEngComm 16:1868–1872

    Article  Google Scholar 

  18. Wang X, Yang W, Li F, Xue Y, Liu R, Hao Y (2013) In situ microwave-assisted synthesis of porous N-TiO2/g-C3N4 heterojunctions with enhanced visible-light photocatalytic properties. Ind Eng Chem Res 52:17140–17150

    Article  Google Scholar 

  19. Chen Y, Huang W, He D, Situ Y, Huang H (2014) Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation. ACS Appl Mater Interfaces 6:14405–14414

    Article  Google Scholar 

  20. Zang Y, Li L, Xu Y, Zuo Y, Li G (2014) Hybridization of brookite TiO2 with g-C3N4: a visible-light-driven photocatalyst for As3 + oxidation, MO degradation and water splitting for hydrogen evolution. J Mater Chem A2:15774–15780

    Article  Google Scholar 

  21. Dong F, Wu L, Sun Y, Fu M, Wu Z, Lee SC (2011) Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J Mater Chem 21:15171–15174

    Article  Google Scholar 

  22. Li XH, Zhang J, Chen X, Fischer A, Thomas A, Antonietti M, Wang X (2011) Condensed graphitic carbon nitride nanorods by nanoconfinement: promotion of crystallinity on photocatalytic conversion. Chem Mater 23:4344–4348

    Article  Google Scholar 

  23. Zhang L, Jing D, She X, Liu H, Yang D, Lu Y, Li J, Zheng Z, Guo L (2014) Heterojunctions in g-C3N4/TiO2(B) nanofibres with exposed (001) plane and enhanced visible-light photoactivity. J Mater Chem A 2:2071–2078

    Article  Google Scholar 

  24. Wang J, Zhang WD (2012) Modification of TiO2 nanorod arrays by graphite-like C3N4 with high visible light photoelectrochemical activity. Electrochim Acta 71:10–16

    Article  Google Scholar 

  25. Yu J, Wang S, Low J, Xiao W (2013) Enhanced photocatalytic performance of Z-scheme g-C3N4-TiO2 photocatalysts for decomposition of formaldehyde in air. Phys Chem Chem Phys 15:16883–16890

    Article  Google Scholar 

  26. Zhu H, Chen D, Yue D, Wang Z, Ding H (2014) In-situ synthesis of g-C3N4-P25 TiO2 composite with enhanced visible light photoactivity. J Nanopart Res 16:2632

    Article  Google Scholar 

  27. Jiang G, Zhou CH, Xia X, Yang F, Tong D, Yu W, Liu S (2010) Controllable preparation of graphitic carbon nitride nanosheets via confined interlayer nanospace of layered clays. Mater Lett 64:2718–2721

    Article  Google Scholar 

  28. Yan H, Yang H (2011) TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation. J Alloys Compd 509:L26–L29

    Article  Google Scholar 

  29. Jurgens B, Irran E, Senker J et al (2003) Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies. J Am Chem Soc 125:10288–10300

    Article  Google Scholar 

  30. Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133:10878–10884

    Article  Google Scholar 

  31. Lotsch BV, Schnick W (2006) From triazines to heptazines: novel nonmetal tricyanomelaminates as precursors for graphitic carbon nitride materials. Chem Mater 18:1891–1900

    Article  Google Scholar 

  32. Ge L, Han C, Liu J, Li Y (2011) Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles. Appl Catal A Gen 409–410:215–222

    Article  Google Scholar 

  33. Liu DG, Tu JP, Hong CF, Gua CD, Mao SX (2010) Two-phase nanostructured carbon nitride films prepared by direct current magnetron sputtering and thermal annealing. Surf Coat Technol 205:152–157

    Article  Google Scholar 

  34. Li J, Shen B, Hong Z, Lin B, Gao B, Chen Y (2012) A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem Commun 48:12017–12019

    Article  Google Scholar 

  35. Zhou J, Zhang M, Zhu Y (2014) Photocatalytic enhancement of hybrid C3N4/TiO2 prepared via ball milling method. Chem Chem Phys, Phys. doi:10.1039/c4cp05173d

    Google Scholar 

  36. Saha NC, Tompkins HG (1992) Titanium nitride oxidation chemistry: an X-ray photoelectron spectroscopy study. J Appl Phys 72:3072–3079

    Article  Google Scholar 

  37. Guillot J, Jouaiti A, Imhoff L, Domenichini B, Heintz O, Zerkout S, Mosser A, Bourgeois S (2002) Nitrogen plasma pressure influence on the composition of TiNxOy sputtered films. Surf Interface Anal 33:577–582

    Article  Google Scholar 

  38. Sathish M, Viswanathan B, Viswanath RP, Gopinath CS (2005) Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chem Mater 17:6349–6353

    Article  Google Scholar 

  39. Chen X, Burda C (2004) Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. J Phys Chem B 108:15446–15449

    Article  Google Scholar 

  40. Wong MS, Pang CH, Yang TS (2006) Reactively sputtered N-doped titanium oxide films as visible-light photocatalyst. Thin Solid Films 494:244–249

    Article  Google Scholar 

  41. Sakthivel S, Janczarek M, Kisch H (2004) Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J Phys Chem B 108:19384–19387

    Article  Google Scholar 

  42. Li D, Haneda H, Hishita S, Ohashi N (2005) Visible-light-driven NF-codoped TiO2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification. Chem Mater 17:2596–2602

    Article  Google Scholar 

  43. Nasir M, Zhang J, Chen F, Tian B (2013) Detailed study of Ce and C codoping on the visible light response of titanium dioxide. Res Chem Intermed. doi:10.1007/s11164-013-1297-7

  44. Subash B, Krishnakumar B, Swaminathan M, Shanthi M (2013) Solar-light-assisted photocatalytic degradation of NBB dye on Zr-codoped Ag–ZnO catalyst. Res Chem Intermed 39:3181–3197

    Article  Google Scholar 

  45. Zhou X, Jin B, Li L, Peng F, Wang H, Yu H, Fang Y (2012) A carbon nitride/TiO2 nanotube array heterojunction visible-light photocatalyst: synthesis, characterization, and photoelectrochemical properties. J Mater Chem 22:17900–17905

    Article  Google Scholar 

  46. Chai B, Peng T, Mao J, Lia K, Zan L (2012) Graphitic carbon nitride (g-C3N4)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation. Phys Chem Chem Phys 14:16745–16752

    Article  Google Scholar 

  47. Zhu H, Chen D, Yue D, Wang Z, Ding H (2014) In-situ synthesis of g-C3N4-P25 TiO2 composite with enhanced visible light photoactivity. J Nanopart Res 16:2632–2641

    Article  Google Scholar 

  48. Huanga Z, Sunb Q, Lva K, Zhanga Z, Lia M, LicaKey B (2015) Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (0 0 1) vs (1 0 1) facets of TiO2. Appl Catal B Environ 164:420–427

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Nature Science Foundation of China (21407049, 21377038, 21237003); the Research Fund for the Doctoral Program of Higher Education (20120074130001), China Postdoctoral Science Foundation (2013M540339), the Fundamental Research Funds for the Central Universities (222201314045), and Shanghai Pujiang Program (14PJ1402100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, J., Chen, Y., Wang, L. et al. Highly condensed g-C3N4-modified TiO2 catalysts with enhanced photodegradation performance toward acid orange 7. J Mater Sci 50, 3467–3476 (2015). https://doi.org/10.1007/s10853-015-8906-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8906-3

Keywords

Navigation