Skip to main content

Graphene oxide and hyperbranched polymer-toughened hydrogels with improved absorption properties and durability


Hyperbranched polymers or/and graphene oxide nanosheets were used to synthesize poly(acrylic acid)-based hybrid hydrogels with high water absorption ability, excellent mechanical properties, and environmental remediation abilities through a novel one-step, cost-effective, and environmentally friendly method. The combination of hyperbranched polymers and graphene oxide nanosheets had synergistic effects on the final hybrid hydrogel, especially on the mechanical behaviors of the hydrogels, with Young’s modulus, tensile strength at break and elongation at break increasing by 69, 308, and 848 %, respectively, while the other properties remained similar to those of pure poly(acrylic acid). The proposed enhancement mechanism is also discussed.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32:277–289

    Article  Google Scholar 

  2. 2.

    Rani M, Agarwal A, Negi YS (2010) Review: chitosan based hydrogel polymeric beads—as drug delivery system. BioResources 5:1–43

    Google Scholar 

  3. 3.

    Verhulsel M, Vignes M, Descroix S, Malaquin L, Vignjevic DM, Viovy JL (2014) A review of microfabrication and hydrogel engineering for micro-organs on chips. Biomaterials 35:1816–1832

    Article  Google Scholar 

  4. 4.

    Alvarez-Lorenzo C, Concheiro A, Dubovik AS, Grinberg NV, Burova TV, Grinberg VY (2005) Temperature-sensitive chitosan-poly(N-isopropylacrylamide) interpenetrated networks with enhanced loading capacity and controlled release properties. J Control Release 102:629–641

    Article  Google Scholar 

  5. 5.

    Coleman RM, Case ND, Guldberg RE (2007) Hydrogel effects on bone marrow stromal cell response to chondrogenic growth factors. Biomaterials 28:2077–2086

    Article  Google Scholar 

  6. 6.

    Liang S, Xu J, Weng L, Dai H, Zhang X, Zhang L (2006) Protein diffusion in agarose hydrogel in situ measured by improved refractive index method. J Control Release 115:189–196

    Article  Google Scholar 

  7. 7.

    Liu K, Li Y, Xu F, Zuo Y, Zhang L, Wang H, Liao J (2009) Graphite/poly (vinyl alcohol) hydrogel composite as porous ringy skirt for artificial cornea. Mater Sci Eng, C 29:261–266

    Article  Google Scholar 

  8. 8.

    Yoshida R, Uesusuki Y (2005) Biomimetic gel exhibiting self-beating motion in ATP solution. Biomacromolecules 6:2923–2926

    Article  Google Scholar 

  9. 9.

    Kabiri K, Omidian H, Hashemi SA, Zohuriaan-Mehr MJ (2003) Synthesis of fast-swelling superabsorbent hydrogels: effect of crosslinker type and concentration on porosity and absorption rate. Eur Polym J 39:1341–1348

    Article  Google Scholar 

  10. 10.

    Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158

    Article  Google Scholar 

  11. 11.

    Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17:451–477

    Google Scholar 

  12. 12.

    Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, Kinbara K, Aida T (2010) High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463:339–343

    Article  Google Scholar 

  13. 13.

    Zheng Y, Wang A (2010) Enhanced adsorption of ammonium using hydrogel composites based on chitosan and halloysite. J Macromol Sci A 47:33–38

    Article  Google Scholar 

  14. 14.

    Haraguchi K, Takehisa T (2002) Nanocomposite Hydrogels. Adv Mater 14:1120–1124

    Article  Google Scholar 

  15. 15.

    Estrada AC, Daniel-Da-Silva AL, Trindade T (2013) Photothermally enhanced drug release by κ-carrageenan hydrogels reinforced with multi-walled carbon nanotubes. RSC Adv 3:10828–10836

    Article  Google Scholar 

  16. 16.

    Warren H, Gately RD, O’Brien P, Gorkin R, Panhuis MIH (2014) Electrical conductivity, impedance, and percolation behavior of carbon nanofiber and carbon nanotube containing gellan gum hydrogels. J Polym Sci B 52:864–871

    Article  Google Scholar 

  17. 17.

    Yang J, Han CR, Duan JF, Xu F, Sun RC (2013) Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels. ACS Appl Mater Interface 5:3199–3207

    Article  Google Scholar 

  18. 18.

    Wang X, Zheng Y, Wang A (2009) Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites. J Hazard Mater 168:970–977

    Article  Google Scholar 

  19. 19.

    Lee S, Lee H, Sim JH, Sohn D (2014) Graphene oxide/poly(acrylic acid) hydrogel by γ-ray pre-irradiation on graphene oxide surface. Macromol Res 22:165–172

    Article  Google Scholar 

  20. 20.

    Zhang K, Lackey MA, Cui J, Tew GN (2011) Gels based on cyclic polymers. J Am Chem Soc 133:4140–4148

    Article  Google Scholar 

  21. 21.

    Okumura Y, Ito K (2001) The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater 13:485–487

    Article  Google Scholar 

  22. 22.

    Haque MA, Kurokawa T, Gong JP (2012) Super tough double network hydrogels and their application as biomaterials. Polymer 53:1805–1822

    Article  Google Scholar 

  23. 23.

    Nishida T, Endo H, Osaka N, Li HJ, Haraguchi K, Shibayama M (2009) Deformation mechanism of nanocomposite gels studied by contrast variation small-angle neutron scattering. Phys Rev E 80:030801

    Article  Google Scholar 

  24. 24.

    Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287:1–11

    Article  Google Scholar 

  25. 25.

    Peng R, Yu Y, Chen S, Yang Y, Tang Y (2014) Conductive nanocomposite hydrogels with self-healing property. RSC Adv 4:35149–35155

    Article  Google Scholar 

  26. 26.

    Huang P, Chen W, Yan L (2013) An inorganic–organic double network hydrogel of graphene and polymer. Nanoscale 5:6034–6039

    Article  Google Scholar 

  27. 27.

    Haubner K, Murawski J, Olk P, Eng LM, Ziegler C, Adolphi B, Jaehne E (2010) The route to functional graphene oxide. ChemPhysChem 11:2131–2139

    Article  Google Scholar 

  28. 28.

    Shen J, Yan B, Li T, Long Y, Li N, Ye M (2012) Mechanical, thermal and swelling properties of poly(acrylic acid)–graphene oxide composite hydrogels. Soft Matter 8:1831–1836

    Article  Google Scholar 

  29. 29.

    Faghihi S, Gheysour M, Karimi A, Salarian R (2014) Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels. J Appl Phys 115:083513

    Article  Google Scholar 

  30. 30.

    Huang Y, Zhang M, Ruan W (2014) High-water-content graphene oxide/polyvinyl alcohol hydrogel with excellent mechanical properties. J Mater Chem A 2:10508–10515

    Article  Google Scholar 

  31. 31.

    Carlmark A, Malmström E, Malkoch M (2013) Dendritic architectures based on bis-MPA: functional polymeric scaffolds for application-driven research. Chem Soc Rev 42:5858–5879

    Article  Google Scholar 

  32. 32.

    Cao A, Liu Z, Chu S, Wu M, Ye Z, Cai Z, Chang Y, Wang S, Gong Q, Liu Y (2010) A facile one-step method to produce graphene–CdS quantum dot nanocomposites as promising optoelectronic materials. Adv Mater 22:103–106

    Article  Google Scholar 

  33. 33.

    Kovtyukhova NI (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–778

    Article  Google Scholar 

  34. 34.

    Yang YK, He CE, He WJ, Yu LJ, Peng RG, Xie XL, Wang XB, Mai YW (2011) Reduction of silver nanoparticles onto graphene oxide nanosheets with N, N-dimethylformamide and SERS activities of GO/Ag composites. J Nanoparticle Res 13:5571–5581

    Article  Google Scholar 

  35. 35.

    Hyperbranched bis-MPA polyester-64-hydroxyl, generation 4 chemical structure.®ion=AU

  36. 36.

    Zu SZ, Han BH (2009) Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel. J Phys Chem C 113:13651–13657

    Article  Google Scholar 

  37. 37.

    Mkhoyan KA, Contryman AW, Silcox J, Stewart DA, Eda G, Mattevi C, Miller S, Chhowalla M (2009) Atomic and electronic structure of graphene-oxide. Nano Lett 9:1058–1063

    Article  Google Scholar 

  38. 38.

    Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S (2007) The structure of suspended graphene sheets. Nature 446:60–63

    Article  Google Scholar 

  39. 39.

    Lin J, Tang Q, Wu J, Hao S (2007) The synthesis and electrical conductivity of a polyacrylate/graphite hydrogel. React Funct Polym 67:275–281

    Article  Google Scholar 

  40. 40.

    Žagar E, Grdadolnik J (2003) An infrared spectroscopic study of H-bond network in hyperbranched polyester polyol. J Mol Struct 658:143–152

    Article  Google Scholar 

  41. 41.

    Larsen OFA, Woutersen S (2004) Vibrational relaxation of the H2O bending mode in liquid water. J Chem Phys 121:12143–12145

    Article  Google Scholar 

  42. 42.

    Wang W, Kang Y, Wang A (2013) One-step fabrication in aqueous solution of a granular alginate-based hydrogel for fast and efficient removal of heavy metal ions. J Polym Res 20:101–110

    Article  Google Scholar 

  43. 43.

    Zhang J, Wang Q, Wang A (2007) Synthesis and characterization of chitosan-g-poly(acrylic acid)/attapulgite superabsorbent composites. Carbohydr Polym 68:367–374

    Article  Google Scholar 

  44. 44.

    Wang J, Wang W, Wang A (2010) Synthesis, characterization and swelling behaviors of hydroxyethyl cellulose-g-poly(acrylic acid)/attapulgite superabsorbent composite. Polym Eng Sci 50:1019–1027

    Article  Google Scholar 

  45. 45.

    Ibrahim M, Nada A, Kamal DE (2005) Molecular interaction studies of acrylic esters with alcohols. Indian J Pure Appl Phys 43:911–917

    Google Scholar 

  46. 46.

    Finocchio E, Macis E, Raiteri R, Busca G (2007) Adsorption of trimethoxysilane and of 3-mercaptopropyltrimethoxysilane on silica and on silicon wafers from vapor phase: an IR study. Langmuir 23:2505–2509

    Article  Google Scholar 

  47. 47.

    Yu Y, Murthy BN, Shapter JG, Constantopoulos KT, Voelcker NH, Ellis AV (2013) Benzene carboxylic acid derivatized graphene oxide nanosheets on natural zeolites as effective adsorbents for cationic dye removal. J Hazard Mater 260:330–338

    Article  Google Scholar 

  48. 48.

    Zhao Y, Song X, Song Q, Yin Z (2012) A facile route to the synthesis copper oxide/reduced graphene oxide nanocomposites and electrochemical detection of catechol organic pollutant. CrystEngComm 14:6710–6719

    Article  Google Scholar 

  49. 49.

    Wang A, Long L, Zhao W, Song Y, Humphrey MG, Cifuentes MP, Wu X, Fu Y, Zhang D, Li X, Zhang C (2013) Increased optical nonlinearities of graphene nanohybrids covalently functionalized by axially-coordinated porphyrins. Carbon 53:327–338

    Article  Google Scholar 

  50. 50.

    Lee CI, Yang WF, Chiou CS (2006) Utilization of water clarifier sludge for copper removal in a liquid fluidized-bed reactor. J Hazard Mater 129:58–63

    Article  Google Scholar 

  51. 51.

    Yu Y, Shapter JG, Popelka-Filcoff R, Bennett JW, Ellis AV (2014) Copper removal using bio-inspired polydopamine coated natural zeolites. J Hazard Mater 273:174–182

    Article  Google Scholar 

  52. 52.

    Lin J, Zhan Y, Zhu Z (2011) Adsorption characteristics of copper (II) ions from aqueous solution onto humic acid-immobilized surfactant-modified zeolite. Colloid Surf A 384:9–16

    Article  Google Scholar 

  53. 53.

    Zheng Y, Hua S, Wang A (2010) Adsorption behavior of Cu2+ from aqueous solutions onto starch-g-poly(acrylic acid)/sodium humate hydrogels. Desalination 263:170–175

    Article  Google Scholar 

  54. 54.

    Alslaibi TM, Abustan I, Ahmad MA, Foul AA (2013) Kinetics and equilibrium adsorption of iron (II), lead (II), and copper (II) onto activated carbon prepared from olive stone waste. Desalin Water Treat 52:7887–7897

    Article  Google Scholar 

  55. 55.

    Kołodyńska D (2011) Chitosan as an effective low-cost sorbent of heavy metal complexes with the polyaspartic acid. Chem Eng J 173:520–529

    Article  Google Scholar 

  56. 56.

    Wang J, Liu F, Wei J (2011) Enhanced adsorption properties of interpenetrating polymer network hydrogels for heavy metal ion removal. Polym Bull 67:1709–1720

    Article  Google Scholar 

  57. 57.

    Chen Y, Chen L, Bai H, Li L (2013) Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification. J Mater Chem A 1:1992–2001

    Article  Google Scholar 

  58. 58.

    Zhang S, Shu X, Zhou Y, Huang L, Hua D (2014) Highly efficient removal of uranium (VI) from aqueous solutions using poly(acrylic acid)-functionalized microspheres. Chem Eng J 253:55–62

    Article  Google Scholar 

  59. 59.

    Çavuş S, Gürdaǧ GL (2009) Noncompetitive removal of heavy metal ions from aqueous solutions by poly[2-(acrylamido)-2-methyl-1-propanesulfonic acid-co-itaconic acid] hydrogel. Ind Eng Chem Res 48:2652–2658

    Article  Google Scholar 

Download references


Y Tang is grateful for the support of the Australian Research Council (ARC) with a Discovery Early Career Research Award (DECRA) Grant (DE120102784) for the research work.

Author information



Corresponding author

Correspondence to Youhong Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 898 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., De Andrade, L.C.X., Fang, L. et al. Graphene oxide and hyperbranched polymer-toughened hydrogels with improved absorption properties and durability. J Mater Sci 50, 3457–3466 (2015).

Download citation


  • Graphene Oxide
  • Acrylic Acid
  • Thermal Gravimetric Analysis
  • Hyperbranched Polymer
  • Water Absorption Capacity