Skip to main content
Log in

Drastic modification of graphene oxide properties by incorporation of nickel: a simple inorganic chemistry approach

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Strong increase in electrical conductivity of graphene oxide (GO) (I ≈ 10−9 A) is found by addition of Ni nanoparticles (NiNPs) preliminarily solved by HCl (Nisol) (I ≈ 10−4 A) or powder (Nipow) obtained from this solution (I ≈ 10−6 A), while simply mixing GO with NiNPs an insulator similar to pure GO is obtained. Thus, Nisol and Nipow can be used to transform GO from insulator to semiconductor. One of the transformation mechanisms is Ni as spillover. At the same time, different kinds of the magnetic response are obtained on GO and reduced GO (rGO) samples with and without Ni. Weak paramagnetic response is detected in pure GO. Stronger paramagnetic behavior is observed for GO and rGO mixed with Nisol or Nipow. Pure rGO sample shows weak ferromagnetism represented by slim but visible hysteresis with remnant magnetization M r of 0.05 emu/g. GO with NiNPs presents clear hysteresis with M r of 2.8 emu/g, while sample prepared by addition of NiNPs to rGO presents the largest hysteresis with M r as high as 11.8 emu/g. Thus, the optimal procedure to obtain the magnetic response requested for particular application can be chosen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Britnell L, Gorbachev RV, Geim AK, Ponomarenko LA, Mishchenko A, Greenaway MT, Fromhold TM, Novoselov KS, Eaves L (2013) Resonant tunnelling and negative differential conductance in graphene transistors. Nat Commun 4:1794-1–1794-5

    Article  Google Scholar 

  2. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  Google Scholar 

  3. Yamashiro Y, Ohno Y, Maehashi K, Inoue K, Matsumoto K (2012) Electric-field-induced band gap of bilayer graphene in ionic liquid. J Vac Sci Technol B 30:03D111-1–03D111-5

    Article  Google Scholar 

  4. Craciun MF, Russo S, Yamamoto M, Oostinga JB, Morpurgo AF, Tarucha S (2009) Trilayer graphene is a semimetal with a gate-tunable band overlap. Nat Nanotechnol 4:383–388

    Article  Google Scholar 

  5. Eda G, Chhowalla M (2010) Chemically derived graphene oxide: towards large-area thin film electronics and opto-electronics. Adv Mater 22:2392–2415

    Article  Google Scholar 

  6. Han MY, Ozyilmaz B, Zhang YB, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805-1–206805-4

    Google Scholar 

  7. Wang XR, Ouyang YJ, Li XL, Wang HL, Guo J, Dai HJ (2008) Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett 100:206803-1–206803-4

    Google Scholar 

  8. Han KH, Spemann D, Esquinazi P, Höhne R, Riede V, Butz T (2003) Ferromagnetic spots in graphite produced by proton irradiation. Adv Mater 15:1719–1722

    Article  Google Scholar 

  9. Vozmediano MAH, Lopez-Sancho MP, Stauber T, Guinea F (2005) Local defects and ferromagnetism in graphene layers. Phys Rev B 72:155121-1–155121-5

    Article  Google Scholar 

  10. Fujita M, Wakabayashi K, Nakada K, Kusakabe K (1996) Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn 65:1920–1923

    Article  Google Scholar 

  11. Shibayama Y, Sato H, Enoki T, Endo M (2000) Disordered magnetism at the metal-insulator threshold in nano-graphite-based carbon materials. Phys Rev Lett 84:1744–1747

    Article  Google Scholar 

  12. Park N, Yoon M, Berber S, Ihm J, Osawa E, Tománek D (2003) Magnetism in all-carbon nanostructures with negative gaussian curvature. Phys Rev Lett 91:237204-1–237204-4

    Google Scholar 

  13. Pisani L, Montanari B, Harrison NM (2008) Predicted to be a room temperature ferromagnetic semiconductor. New J Phys 10:033002-1–033002-10

    Article  Google Scholar 

  14. Son YW, Cohen ML, Louie SG (2006) Half-metallic graphene nanoribbons. Nature 444:347–349

    Article  Google Scholar 

  15. Hong J, Bekyarova E, de Heer WA, Haddon RC, Khirzoev S (2013) Chemically engineered graphene-based 2D organic molecular magnet. ACS Nano 7:10011–10022

    Article  Google Scholar 

  16. Okhay O, Krishna R, Salimian M, Titus E, Gracio J, Guerra LM, Ventura J (2013) Conductivity enhancement and resistance changes in polymer films filled with reduced graphene oxide. J Appl Phys 113:064307-1–064307-5

    Article  Google Scholar 

  17. Mei X, Ouyang J (2011) Ultrasonical-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. Carbon 49:5389–5397

    Article  Google Scholar 

  18. Wang Z, Hu Y, Yang W, Zhou M, Hu X (2012) Facile one-step microwave-assisted route towards Ni nanospheres/reduced graphene oxide hybrids for non-enzymatic glucose sensing. Sensor 12:4860–4869

    Article  Google Scholar 

  19. Moon IK, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:73–79

    Article  Google Scholar 

  20. Choi EY, Han TH, Hong J, Kim JE, Lee SH, Kim HW, Kim SO (2010) Noncovalent functionalization of graphene with end-functional polymers. Mater Chem 20:1907–1912

    Article  Google Scholar 

  21. Khenfouch M, Baïtoul M, Aarab H, Maaza M (2012) Vibrational and thermal properties of confined graphene nanosheets in an individual polymeric nanochannel by electrospinning. Graphene 1:15–20

    Article  Google Scholar 

  22. Zheng L, Li Z, Bourdo S, Watanabe F, Ryerson CC, Biris AS (2011) Catalytic hydrogentation of graphene films. Chem Commun 47:1213–1215

    Article  Google Scholar 

  23. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  Google Scholar 

  24. Fujimori A, Tokura Y (1995) Spectroscopy of mott insulators and correlated metals. Springer, Berlin

    Book  Google Scholar 

  25. Lee JD (2008) Concise inorganic chemistry, 5th edn. Oxford University Press, London

    Google Scholar 

  26. Housecroft CE, Sharpe AG (2008) Inorganic chemistry. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  27. Krishna R, Titus E, Costa LC, Menezes JCJMDS, Correia MRP, Pinto S, Ventura J, Araújo JP, Cavaleiro JAC, Gracio JJA (2012) Facile synthesis of hydrogenated reduced graphene oxide via hydrogen spillover mechanism. J Mater Chem 22:10457–10459

    Article  Google Scholar 

  28. Goethel PJ, Yang RT (1987) Mechanism of catalyzed graphite oxidation by monolayer channeling and monolayer edge recession. J Catal 108:156–158

    Article  Google Scholar 

  29. Mittendorfer F, Hafner J (2002) Hydrogenation of benzene on Ni(111)—a DFT study. J Phys Chem B 106:13299–13305

    Article  Google Scholar 

  30. Solomons TW, Fryhle CB (2004) Organic chemistry, 8th edn. Wiley, New York

    Google Scholar 

  31. Krishna R, Titus E, Salimian M, Okhay O, Rajendran S, Rajkumar A, Sousa JMG, Ferreira ALC, Gil GC, Gracio J (2012) Hydrogen storage for energy application. In: Liu J (ed) Hydrogen storage. Winchester, Intech Open, pp 243–266

    Google Scholar 

  32. Jeong DS, Thomas R, Katiyar RS, Scott JF, Kohlstedt H, Petraru A, Hwang CS (2012) Emerging memories: resistive switching mechanisms and current status. Rep Prog Phys 75:076502-1–076502-31

    Article  Google Scholar 

  33. Park G-S, Li X-S, Kim D-C, Jung R-J, Lee M-J, Seo S (2007) Observation of electric-field induced Ni filament channels in polycrystalline NiOx film. Appl Phys Lett 91:222103-1–222103-3

    Google Scholar 

  34. Morisaki H, Saigo K, Shintani S, Yazawa K (1974) Memory-switching in amorphous carbon films. J Non Cryst Solids 15:531–534

    Article  Google Scholar 

  35. Fu D, Xie D, Zhang CH, Zhang D, Niu JB, Qian H, Liu LT (2010) Preparation and characteristics of nanoscale diamond-like carbon films for resistive memory applications. Chin Phys Lett 27:098102-1–098102-4

    Google Scholar 

  36. Wang Y, Huang Y, Song Y, Zhang X, Ma Y, Liang J, Chen Y (2009) Room-temperature ferromagnetism of graphene. Nano Lett 9:220–224

    Article  Google Scholar 

  37. Ramakrishna Matte HSS, Subrahmanyam KS, Rao CNR (2009) Presence of both ferromagnetic and antiferromagnetic features and other aspects. J Phys Chem C Lett 113:9982–9985

    Article  Google Scholar 

  38. Kimishima Y, Miyata N, Akutsu N, Ichiyanagi Y, Hagiwara M (1992) Magnetic study on the precipitate from the aqueous solutions of NiCl2·6H2O and Na2SiO3·nH2O. J Magn Magn Mater 104–107:781–782

    Article  Google Scholar 

Download references

Acknowledgements

Olena Okhay acknowledges FCT for financial support (SFRH/BD/77704/2011). This work was funded also by the EU’s 7th Framework program IFOX (NMP3-LA-2010 246102), the Graduate School of Excellence MAINZ (GSC 266 Mainz), the German Science Foundation (DFG SPP 1459 Graphene), and the ERC (2007-Stg 208162). Alexander Tkach acknowledges also funds by FEDER through Programa Operacional Factores de Competitividade—COMPETE and national funds through FCT within CICECO Project—FCOMP-01-0124-FEDER-037271 (FCT Ref. PEst-C/CTM/LA0011/2013) and independent researcher grant IF/00602/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olena Okhay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okhay, O., Krishna, R., Tkach, A. et al. Drastic modification of graphene oxide properties by incorporation of nickel: a simple inorganic chemistry approach. J Mater Sci 50, 3425–3433 (2015). https://doi.org/10.1007/s10853-015-8901-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8901-8

Keywords

Navigation