Skip to main content
Log in

In situ random co-polycondensation for preparation of reduced graphene oxide/polyimide nanocomposites with amino-modified and chemically reduced graphene oxide

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Reduced graphene oxide/polyimide (rGO/PI) nanocomposites are prepared via in situ random co-polycondensation of amino-modified and chemically reduced graphene oxide (rGO-NH2) with commercial diamine and dianhydrides. The chemical modification and reduction of graphene oxide (GO) endows rGO-NH2 with good solubility in organic solvents to prepare rGO/PI nanocomposites with high filler contents. rGO-NH2 is further used as a functional co-monomer to participate the polymerization of PI with full compatibility of the guest and host in molecular level. With the addition of rGO-NH2 at 2 wt% content, the thermal, mechanical properties, and hydrophobicities of rGO/PI nanocomposites are significantly enhanced with various indicators achieving or approaching the optimum. The positive or negative impacts of rGO-NH2 with various contents to the properties of the obtained nanocomposites are also illustrated incidentally from micromorphology. This effective approach provides a possibility for developing high-performance PI composites based on graphene for advanced engineering or functional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liaw D-J, Wang K-L, Huang Y-C, Lee K-R, Lai J-Y, Ha C-S (2012) Advanced polyimide materials: syntheses, physical properties and applications. Prog Polym Sci 37:907–974

    Article  Google Scholar 

  2. Zhang Q-H, Dai M, Ding M-X, Chen D-J, Gao L-X (2004) Mechanical properties of BPDA-ODA polyimide fibers. Eur Polym J 40:2487–2493

    Article  Google Scholar 

  3. Liu Y, Xing Y, Zhang Y, Guan S, Zhang H, Wang Y, Wang Y, Jiang Z (2010) Novel soluble fluorinated poly(ether imide)s with different pendant groups: synthesis, thermal, dielectric, and optical properties. J Polym Sci A 48:3281–3289

    Article  Google Scholar 

  4. Hasegawa M, Hirano D, Fujii M, Haga M, Takezawa E, Yamaguchi S, Ishikawa A, Kagayama T (2013) Solution-processable colorless polyimides derived from hydrogenated pyromellitic dianhydride with controlled steric structure. J Polym Sci A 51:575–592

    Article  Google Scholar 

  5. Halim A, Gurr PA, Blencowe A, Bryant G, Kentish SE, Qiao GG (2013) Synthesis and self-assembly of polyimide/poly(dimethylsiloxane) brush triblock copolymers. Polymer 54:520–529

    Article  Google Scholar 

  6. Jia X, Zhang Q, Zhao M-Q, Xu G-H, Huang J-Q, Qian W, Lu Y, Wei F (2012) Dramatic enhancements in toughness of polyimide nanocomposite via long-CNT-induced long-range creep. J Mater Chem 22:7050–7056

    Article  Google Scholar 

  7. Chen D, Liu T, Zhou X, Tjiu WC, Hou H (2009) Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes. J Phys Chem B 113:9741–9748

    Article  Google Scholar 

  8. Delozier DM, Watson KA, Smith JG Jr, Clancy TC, Connell JW (2006) Investigation of aromatic/aliphatic polyimides as dispersants for single wall carbon nanotubes. Macromolecules 39:1731–1739

    Article  Google Scholar 

  9. Gunasekaran SG, Rajakumar K, Alagar M, Dharmendirakumar M (2014) Siloxane core dianhydride modified ether linked cyclohexyl diamine based multi-walled carbon nanotube reinforced polyimide (MWCNT/PI) nanocomposites. J Polym Res 21:342

    Article  Google Scholar 

  10. Loh KP, Bao Q, Anga PK, Yang J (2010) The chemistry of graphene. J Mater Chem 20:2277–2289

    Article  Google Scholar 

  11. Yang SY, Ma CCM, Teng CC, Huang YW, Liao SH, Huang YL, Tien HW, Lee TM, Chiou KC (2010) Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites. Carbon 48:592–603

    Article  Google Scholar 

  12. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen SBT, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  Google Scholar 

  13. Bai H, Li C, Shi G (2011) Functional composite materials based on chemically converted graphene. Adv Mater 23:1089–1115

    Article  Google Scholar 

  14. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  Google Scholar 

  15. Gao W, Alemany LB, Ci L, Ajayan PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1:403–408

    Article  Google Scholar 

  16. Chen D, Zhu H, Liu T (2010) In situ thermal preparation of polyimide nanocomposite films containing functionalized grapheme sheets. ACS Appl Mater Interfaces 2:3702–3708

    Article  Google Scholar 

  17. Huang T, Lu R, Su C, Wang H, Guo Z, Liu P, Huang Z, Chen H, Li T (2012) Chemically modified graphene/polyimide composite films based on utilization of covalent bonding and oriented distribution. ACS Appl Mater Interfaces 4:2699–2708

    Article  Google Scholar 

  18. Luong ND, Hippi U, Korhonen JT, Soininen AJ, Ruokolainen J, Johansson L-S, Nam J-D, Sinh LH, Seppälä J (2011) Enhanced mechanical and electrical properties of polyimide film by grapheme sheets via in situ polymerization. Polymer 52:5237–5242

    Article  Google Scholar 

  19. Qian Y, Lan Y-F, Xu J-P, Ye F-C, Dai S-Z (2014) Fabrication of polyimide-based nanocomposites containing functionalized graphene oxide nanosheets by in situ polymerization and their properties. Appl Surf Sci 314:991–999

    Article  Google Scholar 

  20. Liu H, Li Y, Wang T, Wang Q (2012) In situ synthesis and thermal, tribological properties of thermosetting polyimide/graphene oxide nanocomposites. J Mater Sci 47:1867–1874. doi:10.1007/s10853-011-5975-9

    Article  Google Scholar 

  21. Kim GY, Choi M-C, Lee D, Ha C-S (2012) 2D-Aligned graphene sheets in transparent polyimide/graphene nanocomposite films based on noncovalent interactions between poly(amic acid) and graphene carboxylic acid. Macromol Mater Eng 297:303–311

    Article  Google Scholar 

  22. Pramoda KP, Mya KY, Lin TT, Lu X, He C (2012) Investigation of thermomechanical properties and matrix-filler interaction on polyimide/graphene oxide composites. Polym Eng Sci 52:2530–2536

    Article  Google Scholar 

  23. Tseng IH, Chang J-C, Huang S-L, Tsai M-H (2012) Enhanced thermal conductivity and dimensional stability of flexible polyimide nanocomposite film by addition of functionalized graphene oxide. Polym Int 62:827–835

    Article  Google Scholar 

  24. Dong J, Yin C, Zhao X, Li Y, Zhang Q (2012) High strength polyimide fibers with functionalized grapheme. Polymer 54:6415–6424

    Article  Google Scholar 

  25. Wang J-Y, Yang S-Y, Huang Y-L, Tien H-W, Chin W-K, Ma C-M (2011) Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization. J Mater Chem 21:13569–13575

    Article  Google Scholar 

  26. Zhang L-B, Wang J-Q, Wang H-G, Xu Y, Wang Z-F, Li Z-P, Mi Y-J, Yang S-R (2012) Preparation, mechanical and thermal properties of functionalized graphene/polyimide nanocomposites. Compos A 43:1537–1545

    Article  Google Scholar 

  27. Cao L, Sun Q-Q, Wang H-X, Zhang X-X, Shi H-F (2015) Enhanced stress transfer and thermal properties of polyimide composites with covalent functionalized reduced graphene oxide. Compos A 68:140–148

    Article  Google Scholar 

  28. Yoonessi M, Shi Y, Scheiman DA, Lebron-Colon M, Tigelaar DM, Weiss RA, Meador MA (2012) Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects. ACS Nanotechnol 6:7644–7655

    Google Scholar 

  29. Kong J-Y, Choi M-C, Kim GY, Park JJ, Selvaraj M, Han M, Ha C-S (2012) Preparation and properties of polyimide/graphene oxide nanocomposite films with Mg ion crosslinker. Eur Polym J 48:1394–1405

    Article  Google Scholar 

  30. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  Google Scholar 

  31. Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24:10560–10564

    Article  Google Scholar 

  32. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  Google Scholar 

  33. Wang J-C, Wang X-B, Wan L, Yang Y-K, Wang S-M (2010) An effective method for bulk obtaining graphene oxide solids. Chin J Chem 28:1935–1940

    Article  Google Scholar 

  34. Yang H, Li F, Shan C, Han D, Zhang Q, Niu L, Ivaska A (2009) Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem 19:4632–4638

    Article  Google Scholar 

  35. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158

    Article  Google Scholar 

  36. Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  Google Scholar 

  37. Luong ND, Pahimanolis N, Hippi U, Korhonen JT, Ruokolainen J, Johansson LS, Nam JD, Seppälä J (2011) Graphene/cellulose nanocomposite paper with high electrical and mechanical performances. J Mater Chem 21:13991–13998

    Article  Google Scholar 

  38. Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA Jr, Ruoff RS (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-raman spectroscopy. Carbon 47:145–152

    Article  Google Scholar 

  39. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57

    Article  Google Scholar 

  40. Ha HW, Choudhury A, Kamal T, Kim D-H, Park S-Y (2012) Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites. ACS Appl Mater Interfaces 4:4623–4630

    Article  Google Scholar 

  41. Zhao X, Zhang Q, Chen D, Lu P (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363

    Article  Google Scholar 

  42. Zhang X, Wan S, Pu J, Wang L, Liu X (2011) Highly hydrophobic and adhesive performance of graphene films. J Mater Chem 21:12251–12258

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation (51272071) and the Natural Science Foundation of Hubei Province (2013CFB007). The authors also acknowledge Ministry-of-Education Key Laboratory for the Green Preparation, and Application of Functional Materials and Department of Physics, and Materials Science, City University of Hong Kong for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xian-Bao Wang or Chang-Feng Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WQ., Li, QT., Li, PH. et al. In situ random co-polycondensation for preparation of reduced graphene oxide/polyimide nanocomposites with amino-modified and chemically reduced graphene oxide. J Mater Sci 50, 3860–3874 (2015). https://doi.org/10.1007/s10853-015-8890-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8890-7

Keywords

Navigation