Skip to main content
Log in

Thermal stability of epitaxial cubic-TiN/(Al,Sc)N metal/semiconductor superlattices

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report on the thermal stability of epitaxial cubic-TiN/(Al,Sc)N metal/semiconductor superlattices with the rocksalt crystal structure for potential plasmonic, thermoelectric, and hard coating applications. TiN/Al0.72Sc0.28N superlattices were annealed at 950 and 1050 °C for 4, 24, and 120 h, and the thermal stability was characterized by high-energy synchrotron-radiation-based 2D X-ray diffraction, high-resolution (scanning) transmission electron microscopy [HR(S)/TEM], and energy dispersive X-ray spectroscopy (EDX) mapping. The TiN/Al0.72Sc0.28N superlattices were nominally stable for up to 4 h at both 950 and 1050 °C. Further annealing treatments for 24 and 120 h at 950 °C led to severe interdiffusion between the layers and the metastable cubic-Al0.72Sc0.28N layers partially transformed into Al-deficient cubic-(Al,Sc)N and the thermodynamically stable hexagonal wurtzite phase with a nominal composition of AlN (h-AlN). The h-AlN grains displayed two epitaxial variants with respect to c-TiN and cubic-(Al,Sc)N. EDX mapping suggests that scandium has a higher tendency for diffusion in TiN/(Al,Sc)N than titanium or aluminum. Our results indicate that the kinetics of interdiffusion and the cubic-to-hexagonal phase transformation place constraints on the design and implementation of TiN/(Al,Sc)N superlattices for high-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sands T, Palmstrøm CJ, Harbison JP, Keramidas VG, Tabatabaie N, Cheeks TL, Silberberg Y (1990) Stable and epitaxial Metal/III-V semiconductor heterostructures. Mater Sci Rep 5:98–170

    Article  Google Scholar 

  2. Saha B, Saber S, Naik GV, Boltasseva A, Stach EA, Kvam EP, Sands TD (2014) Development of epitaxial AlxSc1-xN for artificially structured metal/semiconductor superlattice metamaterials. Phys Status Solidi B. doi:10.1002/pssb.201451314

  3. Wong MS, Hsiao GY, Yang SY (2000) Preparation and characterization of AlN/ZrN and AlN/TiN nanolaminate coatings. Surf Coat Technol 133:160–165

    Article  Google Scholar 

  4. Naik GV, Saha B, Liu J, Saber SM, Stach EA, Irudayaraj JMK, Sands TD, Shalaev VM, Boltasseva A (2014) Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials. Proc Natl Acad Sci USA 111:7546–7551

    Article  Google Scholar 

  5. Saha B, Lawrence SK, Schroeder JL, Birch J, Bahr DF, Sands TD (2014) Enhanced hardness in epitaxial TiAlScN alloy thin films and rocksalt TiN/(Al, Sc)N superlattices. Appl Phys Lett 105:151904

    Article  Google Scholar 

  6. Guler U, Boltasseva A, Shalaev VM (2014) Refractory plasmonics. Science 344:263–264

    Article  Google Scholar 

  7. Zebarjadi M, Bian ZX, Singh R, Shakouri A, Wortman R, Rawat V, Sands T (2009) Thermoelectric transport in a ZrN/ScN superlattice. J Electron Mater 38:960–963

    Article  Google Scholar 

  8. Shakouri A, Zebarjadi M (2009) Nanoengineered materials for thermoelectric energy conversion. In: Volz S (ed) Thermal nanosystems and nanomaterials. Springer, Berlin, pp 225–299

    Chapter  Google Scholar 

  9. Norrby N, Johansson MP, M’saoubi R, Oden M (2012) Pressure and temperature effects on the decomposition of arc evaporated Ti0.6Al0.4 N coatings in continuous turning. Surf Coat Technol 209:203–207

    Article  Google Scholar 

  10. Carvalho SR, Silva S, Machado AR, Guimaraes G (2006) Temperature determination at the chip-tool interface using an inverse thermal model considering the tool and tool holder. J Mater Process Technol 179:97–104

    Article  Google Scholar 

  11. Hoglund C, Alling B, Birch J, Beckers M, Persson POA, Baehtz C, Czigany Z, Jensen J, Hultman L (2010) Effects of volume mismatch and electronic structure on the decomposition of ScAlN and TiAlN solid solutions. Phys Rev B 81:224101

    Article  Google Scholar 

  12. Ghafoor N, Johnson LJS, Klenov DO, Demeulemeester J, Desjardins P, Petrov I, Hultman L, Oden M (2013) Nanolabyrinthine ZrAlN thin films by self-organization of interwoven single-crystal cubic and hexagonal phases. APL Mat 1:022105

    Article  Google Scholar 

  13. Chen D, Wang YM, Ma XL (2009) Size-effect on stress behavior of the AlN/TiN film. Acta Mater 57:2576–2582

    Article  Google Scholar 

  14. Deng RP, Muralt P, Gall D (2012) Biaxial texture development in aluminum nitride layers during off-axis sputter deposition. J Vac Sci Technol A 30:051501

    Article  Google Scholar 

  15. Engstrom C, Birch J, Hultman L, Lavoie C, Cabral C, Jordan-Sweet JL, Carlsson JRA (1999) Interdiffusion studies of single crystal TiN/NbN superlattice thin films. J Vac Sci Technol A 17:2920–2927

    Article  Google Scholar 

  16. Setoyama M, Irie M, Ohara H, Tsujioka M, Takeda Y, Nomura T, Kitagawa N (1999) Thermal stability of TiN/AlN superlattices. Thin Solid Films 341:126–131

    Article  Google Scholar 

  17. Kim DG, Seong TY, Baik YJ (2002) Effects of annealing on the microstructures and mechanical properties of UN/A1 N nano-multilayer films prepared by ion-beam assisted deposition. Surf Coat Technol 153:79–83

    Article  Google Scholar 

  18. Barshilia HC, Jain A, Rajam KS (2003) Structure, hardness and thermal stability of nanolayered TiN/CrN multilayer coatings. Vacuum 72:241–248

    Article  Google Scholar 

  19. Barshilia HC, Prakash MS, Jain A, Rajam KS (2005) Structure, hardness and thermal stability of TiAlN and nanolayered TiAlN/CrN multilayer films. Vacuum 77:169–179

    Article  Google Scholar 

  20. Burmistrova P (2012) Microstructure and thermoelectric properties of ScN thin films and metal/ScN superlattices for high-temperature energy conversion. Ph.D. Dissertation, Purdue University

Download references

Acknowledgements

J. L. Schroeder and J. Birch acknowledge financial support from Linköping University and the Swedish Research Council (the RÅC Frame Program (2011-6505) and the Linnaeus Grant (LiLi-NFM)). B. Saha and T. D. Sands acknowledge financial support by the National Science Foundation and US Department of Energy (CBET-1048616). The Knut and Alice Wallenberg (KAW) Foundation is acknowledged for the Electron Microscope Laboratory in Linköping. Special thanks to Lina Rogström, Niklas Norrby, and Daniel Ostach for assistance with the synchrotron-radiation measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy L. Schroeder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schroeder, J.L., Saha, B., Garbrecht, M. et al. Thermal stability of epitaxial cubic-TiN/(Al,Sc)N metal/semiconductor superlattices. J Mater Sci 50, 3200–3206 (2015). https://doi.org/10.1007/s10853-015-8884-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8884-5

Keywords

Navigation