Skip to main content
Log in

Surface tension of binary Al–Si liquid alloys

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present study, the surface tensions of pure liquid Al, Si, and liquid Al–Si alloys were systematically investigated by means of the oscillating drop method in combination with electromagnetic levitation. Prior to the measurement, the ambient oxygen partial pressure in the chamber was measured using an yttrium-stabilized zirconia oxygen sensor to estimate the surface oxygen partial pressure based on the thermodynamic assesssment. Under the experimental Ar gas with oxygen partial pressure of 10–1 Pa, the oxygen-reduced surfaces of pure liquid Al and Si can be obtained. However, the surface tensions of alloys in Al-rich composition are strongly affected by the oxygen adsorption under the same oxygen partial pressure. With the increasing Si concentration, the surface tension of the alloy approaches to the values of the oxygen-reduced surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Caceres CH, Svensson IL, Taylor JA (2003) Strength–ductility behaviour of Al–Si–Cu–Mg casting alloys in T6 temper. Int J Cast Metals Res 15:531–543

    Google Scholar 

  2. Wie PS, Chung FK (2000) Unsteady marangoni flow in a molten pool when welding dissimilar, metals. Metal Mate Trans B 31:1387–1403

    Article  Google Scholar 

  3. Limmaneevichitr C, Kou S (2000) Experiments to simulate effect of marangoni convection on weld pool shape. Welding J New York 79:231–237

    Google Scholar 

  4. Kingrey WD, Humenik M (1953) Surface tension at elevated temperatures. I. Furnace and method for use of the sessile drop method: surface tension of silicon, iron and nickel. J. Phys Chem 57:359–363

    Article  Google Scholar 

  5. Dzhemilev NK, Popel SI, Tsarevskii BV (1964) Isotherm of the density and surface tension of iron-silicon melt. Fiz Met Metalloved 18:83–87

    Google Scholar 

  6. Elyutin VP, Kostikov VI, Levin Ya V (1971) Surface and density of Si-Ti melts, Fizichekaya Khimiay Poverkhnostnykh Yavlenii v Rasplavakh. Naukova Dumka, Kiev, pp 153–159

    Google Scholar 

  7. Mukai K, Yuan Z, Nogi K, Hibiya T (2000) Effect of oxygen partial pressure on the surface tension of molten silicon and its temperature coefficient. ISIJ Int 40:S148–S152

    Article  Google Scholar 

  8. Yuan ZF, Mukai K, Huang WL (2002) Effect of antimony on the surface tension of molten silicon. J. Colloid Interface Sci 249:471–475

    Article  Google Scholar 

  9. Huang X, Togawa S, Chung SI, Terashima L, Kimura S (1995) Surface tension of a Si melt: influence of oxygen partial pressure. J Crys Growth 156:52–58

    Article  Google Scholar 

  10. Fujii H, Mastsumoto T, Izutani S, Kiguchi S, Nogi K (2006) Surface tension of molten silicon measured by micrograviy oscillating drop method and improved sessile drop method. Acta Metaria 54:1221–1225

    Article  Google Scholar 

  11. Nizhenko VI, Smirnov I (1994) The temperature dependences of the density and surface tension of silicon-tin melts, Russian. J Phys Chem 68:676–678

    Google Scholar 

  12. Baum BA, Geld PV, Levin ES (1966) Effect of temperature and composition on the density and surface energy of chromium-silicon alloys, Russian. J Phys Chem 40:795–798

    Google Scholar 

  13. Naidich YV, Perevertailo VM, Obushchak LP (1975) Density and surface tension of alloys of the system Au-Si and Au-Ge. Soviet Powder Metallurgy and Metal Ceramics 14:403–404

    Article  Google Scholar 

  14. Hardy SC (1984) The surface tension of liquid silicon. J Crys Growth 69:456–460

    Article  Google Scholar 

  15. Przyborowski M, Hibiya T, Eguchi M, Egry I (1995) Surface tension measurement of molten silicon by oscillating drop method using electromagnetic levitation. J Crys Growth 151:60–65

    Article  Google Scholar 

  16. Zhou Z, Mukherjee S, Rhim WK (2003) Measurement of thermophysical properties of molten silicon using an upgraded electrostatic levitator. J Crys Growth 257:350–358

    Article  Google Scholar 

  17. Millot F, Kanian VS, Rifflet JC, Vient B (2008) The surface tension of liquid silicon at high temperature. Mat Sci Eng A 495:8–13

    Article  Google Scholar 

  18. Hibiya T, Morohoshi K, Ozawa S (2010) Oxygen partial pressure dependence on surface tension and its temperature coefficient for metallic melts: a discussion from the view point of solubility and adsorption of oxygen. J Mater Sci 45:1986–1992

    Article  Google Scholar 

  19. Eustathopoulos N, Drevet B (2013) Surface tension of liquid silicon: high or low value? J Crys Growth 371:77–83

    Article  Google Scholar 

  20. Keene BJ (1993) Review of data for the surface tension of pure metals. Int Mat Rev 38:157–192

    Article  Google Scholar 

  21. Gouniri L, Joud JC, Resre P, Michter JM (1979) Sensions Superficielles D’ alliages liquides binaires presentant un caractere d’immiscibilite: Al-Pb, Al-Bi, Al-Se et Yn-Bi. Sur Sci 83:471–486

    Article  Google Scholar 

  22. Levin ES, Ayushina GD, Gel’d PV (1968) Density and surface-energy polytherms of liquid (molten) aluminum. Vysokika Temp 6:416–418

    Google Scholar 

  23. Naidich YV, Eremenko VN (1961) Large drop method for the high-temperature of determination of the surface tensions and densities of molten metals. Fiz Met Metalloved 11:883–888

    Google Scholar 

  24. Popel SI, Kozhurkov VN, Zhukov AA (1975) Izv Akad Nauk SSSR Met 5:69 (in Russian) cited in Popel SI, Zakharova TV, Kozhevnikova VA (1976) Density, surface tension and adhesion to iron of Pb-Sn melts. Prot Met 12:423–425

  25. Levin ES, Ayushima GD, Gel’d PV, Ryss MA, Seryi VF (1971) In: Eremenko VN (ed) Fiz. Khim. Poverkh Yavleni, vol 120. Naukova Dumka, Kiev, pp 153–156 (in Russian). Cited in Keene BJ (1993) Review of data for the surface tension of pure metals. Int Mater Rev 38:157–192

  26. Paramonov VA, Karamydhev EP, Ukhov VF (1977) Colloq. On physics and chemistry of surface melts. In: Fiz. Khim. Poverkh Rasp. Tbilisi, Metsniyerba, p 155 (in Russian). Cited in Keene BJ (1993) Review of data for the surface tension of pure metals. Int Mater Rev 38:157–192

  27. Ayushima GD, Levin ES, Gel’d PV (1969) Effect of temperature and composition on the densities and surface tensions of iron-aluminum alloys. Russ J Phys Chem 43:1548–1551

  28. Bykova NA, Schevchenko VG (1974) Density and surface tension of copper aluminum, gallium, indium and tin, Physicochemical investigations of liquid metals and alloys. Severdlovsk 29:42

  29. Yatsenko SP, Kononenko VI, Sukhman AL (1972) Experimental investigation of temperature dependence between surface tension and density of tin, indium, aluminum and gallium. Term Phys High temp 10:66–71. Translated from Teplofixika Vysokikh Temperatur (in Russian)

  30. Goumiri L, Joud JC (1982) Auger electron spectroscopy study of aluminum-tin liquid system. Acta Metall 30:1397–1405

    Article  Google Scholar 

  31. Eustathopolous N, Joud JC, Desre P, Michter JM (1974) The wetting of carbon by aluminium and aluminium alloys. J Mater Sci 9:1233–1242. doi:10.1007/BF00551836

    Article  Google Scholar 

  32. Vatolin NA, Esin OA, Ukhov VF, Dubinin EL (1969) Tr Inst Metall (Sverdlovsk) 18:73 (in Russian) cited in Lukin SV, Zhuchkov VI, Vatolin NA (1978) Surface tension, density and oxidation kinetics of Fe-Si-B alloys. J Less-Common Met 67:399–405

  33. Davies VL, Wesr JM (1963–1964) Influence of small additions of sodium on the surface tension of aluminum and aluminum-silicon alloys. J Inst Met 92:208–210

  34. Cordovilla CG, Louis E, Pamies A (1986) The surface tension of liquid pure aluminum and aluminum–magnesium alloy. J Mater Sci 21:2787–2792. doi:10.1007/BF00551490

    Article  Google Scholar 

  35. Laty P, Joud JC, Resre P (1977) Tension superficielle d’ alliages liquides aluminum-cuivre. Sur Sci 69:508–520

    Article  Google Scholar 

  36. Pelzel E (1948) Surface tension of liquid metals and alloys, I-II. Berg Hüttenmänn Monatsh 93:247–254

    Google Scholar 

  37. Pelzel E (1948) Surface tension of liquid metals and alloys, II. Berg Hüttenmänn Monatsh 94:10–17

    Google Scholar 

  38. Lang G (1974) The influence of alloying elements to the surface tension of liquid super purity alu-minium. Aluminium 50:731–734

    Google Scholar 

  39. Pamies A, Cordovilla CG, Louis E (1984) The measurement of surface tension of liquid aluminium by means of the maximum bubble pressure method: the effect of surface oxidation. Scr Metall 18:869–872

    Article  Google Scholar 

  40. Saravanan RA, Molina JM, Narciso J, Carcia Cordovilla C, Louis E (2001) Effect of nitrogen on the surface tension of pure aluminum at high temperature. Scripta Mater 44:965–970

    Article  Google Scholar 

  41. Molina JM, Voytovych R, Louis E, Eustathopoulos N (2007) The surface tension of liquid aluminium in high vacuum: the role of surface condition. Int J Adh Adhesives 27:394–401

    Article  Google Scholar 

  42. Kanian VS, Millot F, Rifflet JC (2003) Surface tension and density of oxygen-free liquid aluminum at high temperature. Int J Thermophys 24:277–286

    Article  Google Scholar 

  43. Tanaka T, Iida T (1994) Application of thermodynamic database to the calculation of surface tension for iron-base liquid alloys. Steel Res 65:21–28

    Google Scholar 

  44. Butler JAV (1932) The thermodynamics of the surfaces of solutions. Proc R Soc London A 135:348–375

    Article  Google Scholar 

  45. Hoar TP, Melford DA (1957) The surface tension of binary liquid mixture: lead + tin and lead + indium alloys. Trans Farad Soc 53:315–326

    Article  Google Scholar 

  46. Tanaka T, Hack K, Iida T, Hara S (1996) Application of thermodynamic databases to the evaluation of surface tensions of molten alloys, salt mixture and oxide mixture. Z Metallkd 87:380–389

    Google Scholar 

  47. Brillo J, Egry I, Westphal J (2008) Density and thermal expansion of liquid binary AlAg and AlCu alloys. Int Mat Res 99:162–167

    Article  Google Scholar 

  48. Higuchi K, Kimura K, Mizuno A, Watanabe M, Katayama Y, Kuribayashi K (2007) Density and structure of undercooled molten silicon using synchrotron radiation combined with an electromagnetic levitation technique. J Non-Crys Solids 353:2997–2999

    Article  Google Scholar 

  49. He CY, Du Y, Chen HL, Xu H (2009) Experimental investigation and thermodynamic modeling of the Al-Cu-Si system. Calphad 33:200–210

    Article  Google Scholar 

  50. Speiser R, Poirier DR, Yeum K (1987) Surface tension of binary liquid alloys. Scripta Metall 21:687–692

    Article  Google Scholar 

  51. Li D, Herlach DM (1996) High undercooling of bulk molten silicon by containerless processing. Europhys Lett 34:423–428

    Article  Google Scholar 

  52. Krishnan S, Hansen GP, Hauge RH, Margrave JL (1990) Spectral emissivities and optical-properties of electromagnetically levitated liquid-metals as function of temperature and wavelength. High Temp Sci 29:17–52

    Google Scholar 

  53. Murray JL, McAlister AJ (1984) The Al-Si system. Bull Alloy Phase Diagram 5:74–84

    Article  Google Scholar 

  54. Rayleigh L (1879) On the capillary phenomena of jets. Proc R Soc London 29:71–97

    Article  Google Scholar 

  55. Cummings DL, Blackburn DA (1991) Oscillations of magnetically levitated aspherical droplets. J Fluid Mech 224:395–416

    Article  Google Scholar 

  56. Brillo J, Lohöfer G, Schmidt HF, Schneider S, Egry I (2006) Thermophysical property measurements of liquid metals by electromagnetic levitation. Int Mat Prod Tech 26:247–273

    Google Scholar 

  57. Laurent V, Chatain D, Chatillon C, Eustathopoulos N (1988) Wettability of monocrystalline alumina by aluminum between its melting point and 1273 K. Acta Metall 36:1797–1803

    Article  Google Scholar 

  58. Mailliart O, Hodaj F, Chaumat V, Eustathopoulos N (2008) Influence of oxygen partial pressure on the wetting of SiC by a Co-Si alloy. Mat Sci Eng A 495:174–180

    Article  Google Scholar 

  59. Ratto M, Ricci E, Arato E (2000) Mechanism of oxidation/dioxidation of liquid silicon: theoretical analysis and interpretation of experimental surface tension data. J Crys Growth 217:233–249

    Article  Google Scholar 

  60. Fiori L, Ricci E, Arato E (2003) Dynamic surface tension measurement on molten metal-oxygen system: model validation on molten tin. Acta Mater 51:2873–2890

    Article  Google Scholar 

  61. Ricci E, Arato E, Passerone A, Costa P (2005) Oxygen tensioactivity on liquid metal drops. Adv Coll Interface Sci 117:15–32

    Article  Google Scholar 

  62. Ricci E, Giuranno D, Arato E, Costa P (2008) Validation of an effective oxidation pressure model for liquid binary alloys. Mat Sci Eng A 495:27–31

    Article  Google Scholar 

  63. Chase MW, Davies CA, Downey JR, Frurip DJ, MacDonald RA, Syverud AN (1998) JANAF Thermochemical Tables. 4th edn. American Chemical Society, American Institute of Physics for the National Bureau of Standards

  64. Jacobson N (1993) Corrosion of silicon-based ceramics in combustion environments. J Am Ceramic Soc 76:3–28

    Article  Google Scholar 

  65. Wriedt HA (1986) The Al-O (aluminum-oxygen) system. Bull Alloy Phase Diagram 6:548–553

    Article  Google Scholar 

  66. Carlberg T (1986) Calculated solubilities of oxygen in liquid and solid silicon. J Electrochem Soc 133:1940–1942

    Article  Google Scholar 

  67. Murray JL, McAlister AJ (1984) The Al-Si (aluminum-silicon) system. Bull Alloy Phase Diagrams 5:74–84

    Article  Google Scholar 

Download references

Acknowledgements

Within the framework of the bundled project PAK 461, this study was financially supported by the Deutsche Forschungsgemeinschaft DFG under grant number BR 3665/3-2. The authors are grateful to Dr. Zach Evanson for a critical review of this study and his valuable suggestions. The authors also thank Pr. Dr. Hiroyuki Fukuyama for his critical suggestion on this study. The authors are grateful to Dr. Kolbe Matthias for help during the sample analysis using electron microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidekazu Kobatake.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobatake, H., Brillo, J., Schmitz, J. et al. Surface tension of binary Al–Si liquid alloys. J Mater Sci 50, 3351–3360 (2015). https://doi.org/10.1007/s10853-015-8883-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8883-6

Keywords

Navigation