Pore connectivity of aluminium foams: effect of production parameters


This work studies the effect of some production parameters on the pore connectivity grade (i.e., the open-cell content associated cracks and missing cell walls) of aluminium foams produced via powder metallurgy route. Two types of precursors, extruded and hot uniaxially compressed, were used to create a varied group of Al–Si and Al–Si-Mg alloy-based foams in a wide porosity range. The cellular structure and defects were characterized by gas pycnometry and X-ray tomography. The analysis performed points to a high pore connectivity in all foam specimens, despite these materials are classified as closed celled due to their appearance, and a significant dependence on all the parameters varied. These dependences and the related mechanisms are discussed in the paper in terms of (i) the dissimilar foam evolution at initial stages (effect of precursor processing technique), (ii) the solidification shrinkage of each alloy (effect of composition) and (iii) the cell wall thinning (effect of foam porosity and local drainage). In addition, it has been observed that the interconnections are preferably located in the central parts of the samples, thus suggesting the possible effect of the cooling conditions on defect generation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Banhart J (2001) Manufacture, characterization and application of cellular metals. Prog Mater Sci 46(6):559–632

    Article  Google Scholar 

  2. 2.

    Baumgärtner F, Duarte I, Banhart J (2000) Industrialization of powder compact foaming process. Adv Eng Mater 2:168–174

    Article  Google Scholar 

  3. 3.

    Ito K, Kobayashi H (2006) Production and fabrication technology development of aluminum useful for automobile lightweighting. Adv Eng Mater 8:828–835

    Article  Google Scholar 

  4. 4.

    Olurin OB, Fleck NA, Ashby MF (2000) Deformation and fracture of aluminium foams. Mater Sci Eng A 291:136–146

    Article  Google Scholar 

  5. 5.

    Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  6. 6.

    McCullough KYG, Fleck NA, Ashby MF (1999) Toughness of aluminium alloy foam. Acta Mater 47:2331–2343

    Article  Google Scholar 

  7. 7.

    Harte AM, Fleck NA, Ashby MF (1999) Fatigue failure of an open cell and closed cell Al foam. Acta Mater 47:2511–2524

    Article  Google Scholar 

  8. 8.

    Gibson LJ (2000) Mechanical behaviour of metallic foams. Annu Rev Mater Sci 30:191–227

    Article  Google Scholar 

  9. 9.

    Ramamurty U, Paul A (2004) Variability in the mechanical properties of a metal foam. Acta Mater 52:869–876

    Article  Google Scholar 

  10. 10.

    Kennedy AR (2004) Aspects of the reproducibility of mechanical properties in Al based foams. J Mater Sci 39:3085–3088

    Article  Google Scholar 

  11. 11.

    Nosko M, Simancik F, Florek R (2010) Reproducibility of aluminium foam properties: effect of precursor distribution on the structural anisotropy and the collapse stress and its dispersion. Mater Sci Eng A 527:5900–5908

    Article  Google Scholar 

  12. 12.

    Evans AG, Sugimura Y (1997) On the mechanical performance of closed cell Al foam alloy. Acta Mater 45:5245–5259

    Article  Google Scholar 

  13. 13.

    McCullough KYG, Fleck NA, Ashby MF (1999) Uniaxial stress-strain behaviour of aluminium foams. Acta Mater 47:2323–2330

    Article  Google Scholar 

  14. 14.

    Grenestedt JL, Tanaka K (1999) Influence of cell shape variations on elastic stiffness of closed cellular solids. Scr Mater 40:71–77

    Article  Google Scholar 

  15. 15.

    Banhart J, Baumeister J (1998) Deformation characteristics of metal foams. J Mater Sci 33:1431–1440

    Article  Google Scholar 

  16. 16.

    Simone AE, Gibson LJ (1998) Effects of solid distribution on the stiffness and strength of metallica foams. Acta Mater 46(6):2139–2150

    Article  Google Scholar 

  17. 17.

    Simone AE, Gibson LJ (1998) The effects of cell face curvature and corrugations on the stiffness and strength of metallica foams. Acta Mater 46(11):3929–3935

    Article  Google Scholar 

  18. 18.

    Miyoshi T, Itoh M, Akiyama S, Kitahara A (2000) ALPORAS aluminium foam: production process, properties and applications. Adv Eng Mater 2(4):179–183

    Article  Google Scholar 

  19. 19.

    Gergely V, Clyne TW (2000) The FORMGRIP process: foaming of reinforced metals by gas release in precursors. Adv Eng Mater 2:175–178

    Article  Google Scholar 

  20. 20.

    Olurin OB, McCullough KYG, Fleck NA, Ashby MF (2001) Fatigue crack propagation in aluminium alloy foams. Int J Fatigue 23:375–382

    Article  Google Scholar 

  21. 21.

    Banhart J, Schmoll C, Neuman U (1998) Light-weight aluminium foam structures for ships. In: Faria L (ed) Proceedings, vol 1. Sociedade Portuguesa de Materials, Lisbon, pp 55–63

    Google Scholar 

  22. 22.

    Lu TJ, Hess A, Ashby MF (1999) Sound absorption in metallic foams. J Appl Phys 85(11):7528–7539

    Article  Google Scholar 

  23. 23.

    Lu TJ, Chen F, He D (2000) Sound absorption of cellular metals with semi-open cells. J Acoust Soc Am 108:1697–1709

    Article  Google Scholar 

  24. 24.

    Wang X, Lu TJ (1999) Optimized acoustic properties of cellular solids. J Acoust Soc Am 106(2):756–765

    Article  Google Scholar 

  25. 25.

    Lu TJ, Chen C (1999) Thermal transport and fire retardance properties of cellular aluminium alloys. Acta Mater 47:1469–1485

    Article  Google Scholar 

  26. 26.

    Lazaro J, Solorzano E, Escudero J, de Saja JA, Rodriguez-Perez MA (2012) Applicability of solid solution heat treatments to aluminium foams. Metals 2:508–528

    Article  Google Scholar 

  27. 27.

    Elmouataouakkil A, Salvo L, Maire E, Peix G (2002) 2D and 3D characterization of metal foams using X-ray tomography. Adv Eng Mater 4:803–807

    Article  Google Scholar 

  28. 28.

    Solorzano E, Rodriguez-Perez MA, de Saja JA (2008) Do we really produce closed cell metallic foams? In: Hirsch J, Skrotzki B, Gottstein G (eds) Proc of the ICAA-11, Wiley-VCH, Weinheim, pp 2200–2205

  29. 29.

    Lazaro J, Solorzano E, de Saja JA, Rodriguez-Perez MA (2013) Early anisotropic expansion of aluminium foam precursors. J Mater Sci 48:5036–5046

    Article  Google Scholar 

  30. 30.

    Mukherjee M (2009) Evolution of metal foams during solidification. PhD Dissertation, Tech Univ, Berlin

  31. 31.

    Mukherjee M, Garcia-Moreno F, Banhart J (2007) Anomalous behaviour of aluminium foams during solidification. Trans Indian Inst Met 60:133–136

    Google Scholar 

  32. 32.

    Mukherjee M, Garcia-Moreno F, Banhart J (2010) Solidification of aluminium foams. Acta Mater 58:6358–6370

    Article  Google Scholar 

  33. 33.

    Mukherjee M, Garcia-Moreno F, Banhart J (2010) Defect generation during solidification of aluminium foams. Scr Mater 63:235–238

    Article  Google Scholar 

  34. 34.

    Yu CJ, Eifert HH, Banhart J, Baumeister J (1998) Metal foaming by a powder metallurgical method: production, properties and applications. J Mater Res Innov 2:181–188

    Article  Google Scholar 

  35. 35.

    Kennedy AR (2002) Effect of compaction density on foamability of Al-TiH2 powder compacts. Powder Metall 45:75–79

    Article  Google Scholar 

  36. 36.

    Duarte I, Banhart J (2000) Influence of process parameters on the expansion behaviour of aluminium foams. In: Clyne TW, Simancik F (eds) Metal matrix composites and metallic foams. Wiley-VCH, Weinheim, pp 14–21

    Google Scholar 

  37. 37.

    Asavavisithchai S, Kennedy AR (2006) The effect of compaction method on the expansion and stability of aluminium foams. Adv Eng Mater 8:810–815

    Article  Google Scholar 

  38. 38.

    Youn SW, Kang CG (2004) Fabrication of foamable precursors by powder compression and induction heating process. Metall Mater Trans B 35:769–776

    Article  Google Scholar 

  39. 39.

    Helwig HM, Hiller S, Garcia-Moreno F, Banhart J (2009) Influence of compaction conditions on the foamability of AlSi8Mg4 alloy. Metall Mater Trans B 40:755–767

    Article  Google Scholar 

  40. 40.

    East J, Maxwell I (1985) Continuous extrusion of metals. US patent No. 4552520

  41. 41.

    Stauffer D (2003) Introduction to percolation theory. Taylor and Francis, London, pp 311–344

    Google Scholar 

  42. 42.

    Solorzano E, Reglero JA, Rodriguez-Perez MA, de Saja JA, Rodriguez-Mendez ML (2007) Improvement of the foaming process for 4045 and 6061 aluminium foams by using the Taguchi methodology. J Mater Sci 42:7227–7238

    Article  Google Scholar 

  43. 43.

    ASTM D6226-05 Standard test method for open-cell content of rigid cellular plastics by the air pycnometer

  44. 44.

    Cawood MJ (1980) A method for measuring the volume percentage of closed cells in rigid cellular plastics. Polym Test 1:283–285

    Article  Google Scholar 

  45. 45.

    Solorzano E (2008) Aluminium foams: foaming process, structure and properties. PhD Dissertation, Univ Valladolid

  46. 46.

    http://www.octopusimaging.eu. Accessed 15 Oct 2014

  47. 47.

    Image Processing and Analysis in Java (ImageJ). http://rsb.info.nih.gov/ij/. Accessed 10 Apr 2014

  48. 48.

    http://imorph.fr. Accessed 15 Oct 2014

  49. 49.

    Brabant L, Vlassenbroeck J et al (2011) Three-dimensional analysis of high-resolution X-ray computed tomography data with Morpho+. Microsc Microanal 17:252–263

    Article  Google Scholar 

  50. 50.

    Solorzano E, Rodriguez-Perez MA, Reglero JA, de Saja JA (2007) Density gradients in aluminium foams: characterisation by computed tomography and measurements of the effective thermal conductivity. J Mater Sci 42:2557–2564

    Article  Google Scholar 

  51. 51.

    Hildebrand T, Rüesgsegger P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 185:67–75

    Article  Google Scholar 

  52. 52.

    Garcia-Moreno F, Rack A et al (2008) Fast processes in liquid metal foams investigated by high-speed synchrotron X-ray micro-radioscopy. Appl Phys Lett 92(13):134104

    Article  Google Scholar 

  53. 53.

    Rack A, Garcia-Moreno F, Baumbach T, Banhart J (2009) Synchrotron-based radioscopy employing spatio-temporal micro-resolution for studying fast phenomena in liquid metal foams. J Synch Radiat 16(3):432–434

    Article  Google Scholar 

  54. 54.

    Anson JP, Gruzleski JE (1999) The quantitative discrimination between shrinkage and gas microporosity in cast aluminium alloys using spatial data analysis. Mater Charact 43:319–335

    Article  Google Scholar 

  55. 55.

    Anson JP, Gruzleski JE (1999) Effect of hydrogen content on the relative amounts of shrinkage and gas microporosity in a cast Al-7 %Si foundry alloy. Trans Am Foundry Soc 107:135–142

    Google Scholar 

  56. 56.

    Magnusson T, Arnberg L (2001) Density and solidification shrinkage of hypoeutectic aluminum-silicon alloys. Metall Mater Trans A 32(10):2605–2614

    Article  Google Scholar 

  57. 57.

    Banhart J (2006) Metal foams: production and stability. Adv Eng Mater 8(9):781–794

    Article  Google Scholar 

  58. 58.

    Toda H, Takata M et al (2006) 3-D Image-based mechanical simulation of aluminium foams: effects of internal microstructure. Adv Eng Mater 8(6):459–467

    Article  Google Scholar 

  59. 59.

    Mukherjee M, Ramamurty U, Garcia-Moreno F, Banhart J (2010) The effect of cooling rate on structure and properties of closed-cell aluminium foams. Acta Mater 58:5031–5042

    Article  Google Scholar 

  60. 60.

    Mutwil J, Kujawa K, Marczewski P, Michajlow P (2008) Influence of silicon concentration on linear contraction process of Al-Si binary alloy. Arch Foundry Eng 8(4):141–148

    Google Scholar 

  61. 61.

    Keneddy AR, Lopez V (2003) The decomposition behaviour of as-received and oxidized TiH2. Mater Sci Eng A 357:258–263

    Article  Google Scholar 

  62. 62.

    von Zeppelin F, Hirscher M, Stanzick H, Banhart J (2003) Desorption of hydrogen from blowing agents used for foaming metals. Compos Sci Technol 63:2293–2300

    Article  Google Scholar 

  63. 63.

    Rack A, Helwig HM et al (2009) Early pore formation in aluminium foams studied with ex situ synchrotron micro-tomography and 3D image analysis. Acta Mater 57(16):4809–4821

    Article  Google Scholar 

  64. 64.

    Lazaro J, Laguna-Gutierrez E, Solórzano E, Rodriguez-Perez MA (2013) Effect of microstructural anisotropy of PM precursor son the characteristic expansion of aluminium foams. Metall Mater Trans B 44:984–991

    Article  Google Scholar 

  65. 65.

    Murray JL, McAlister AJ (1984) The Al-Si system. Bull Alloy Phase Diagr 5(1):74–84

    Article  Google Scholar 

  66. 66.

    Raghavan V (2007) Al-Mg-Si. Phase diagrams evaluations 28:189–191

    Google Scholar 

  67. 67.

    Lutze P, Ruge J (1990) Hydrogen in aluminium and its alloys. Metall 44:741–748

    Google Scholar 

Download references


Financial assistance the Spanish Ministry of Science and Innovation and FEDER (MAT2009-14001-C02-01 and MAT2012-34901) and of the ESA (AO-99-075) is gratefully acknowledged. In addition, authors are grateful to the Spanish Ministry of Science and Education which supported this investigation with a FPU-doctoral grant Ref-AP-2007-03318 (Jaime Lázaro) and Juan de la Cierva grant JCI-2011-09775 (Eusebio Solórzano). Authors would also like to thank Alulight Company for having provided some of the precursor materials used in this study.

Author information



Corresponding author

Correspondence to J. Lázaro.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lázaro, J., Solórzano, E., Rodríguez Pérez, M.A. et al. Pore connectivity of aluminium foams: effect of production parameters. J Mater Sci 50, 3149–3163 (2015). https://doi.org/10.1007/s10853-015-8876-5

Download citation


  • Foam
  • Cell Wall Thickness
  • Aluminium Foam
  • Crack Generation
  • Thin Cell Wall