Skip to main content
Log in

Tunable morphology from 2D to 3D in the formation of hierarchical architectures from a self-assembling dipeptide: thermal-induced morphological transition to 1D nanostructures

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Construction of complex three-dimensional (3D) architectures through hierarchical self-assembly of peptide molecules has become an attractive approach of fabricating multifunctional advanced materials due to their various potential applications in bionanotechnology. This paper describes the tunable formation of flower-like 3D hierarchical architectures of intricate morphology from a simple self-assembling dipeptide phenylalanine–tyrosine with a facile preparative method by applying a range of voltages through a drop of peptide solution. The fine-tuning of voltages and their application time enable to produce morphological changes of the microstructures from 2D to 3D and also control their formation. The morphology has been characterized by the gradual change in the height-to-diameter ratio of the microstructures with change in the applied voltages. Moreover, these microstructures show significant thermal stability over a wide range of temperatures, whereas adequately high temperature promotes the morphological transformation of the microstructures into different types of ultrathin 1D nanostructures such as nanowires, nanofibrils, etc. Furthermore, we have suggested a possible growth model for the fabrication of unique hierarchical architectures through diffusion-limited aggregation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421

    Article  Google Scholar 

  2. Zhang S (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21:1171–1178

    Article  Google Scholar 

  3. Palmer LC, Stupp SI (2008) Molecular self-assembly into one-dimensional nanostructures. Acc Chem Res 41:1674–1684

    Article  Google Scholar 

  4. Gazit E (2010) Bioinspired chemistry: diversity for self-assembly. Nat Chem 2:1010–1011

    Article  Google Scholar 

  5. Ulijn RV, Smith AM (2008) Designing peptide based nanomaterials. Chem Soc Rev 37:664–675

    Article  Google Scholar 

  6. Ball P (1999) The self-made tapestry. Oxford University Press, Oxford

    Google Scholar 

  7. Sanchez C, Arribart H, Guille MMG (2005) Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater 4:277–288

    Article  Google Scholar 

  8. Noorduin WL, Grinthal A, Mahadevan L, Aizenberg J (2013) Rationally designed complex, hierarchical microarchitectures. Science 340:832–837

    Article  Google Scholar 

  9. Lehn J-M (2013) Perspectives in chemistry—steps towards complex matter. Angew Chem Int Ed 52:2836–2850

    Article  Google Scholar 

  10. Jeon TY, Jeon HC, Lee SY, Shim TS, Kwon J-D, Park S-G, Yang S-M (2014) 3D hierarchical architectures prepared by single exposure through a highly durable colloidal phase mask. Adv Mater 26:1422–1426

    Article  Google Scholar 

  11. Wang A, Huang J, Yan Y (2014) Hierarchical molecular self-assemblies: construction and advantages. Soft Matter 10:3362–3373

    Article  Google Scholar 

  12. Tirrell DA (1994) Hierarchical structures in biology as a guide for new materials. National Academy Press, Washington, DC

    Google Scholar 

  13. Vukusic P, Sambles JR (2003) Photonic structures in biology. Nature 424:852–855

    Article  Google Scholar 

  14. Chu K-H, Xiao R, Wang EN (2010) Uni-directional liquid spreading on asymmetric nanostructured surfaces. Nat Mater 9:413–417

    Article  Google Scholar 

  15. Aizenberg J, Weaver JC, Thanawala MS, Sundar VC, Morse DE, Fratzl P (2005) Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309:275–278

    Article  Google Scholar 

  16. Gansel JK, Thiel M, Rill MS, Decker M, Bade K, Saile V, Freymann G, Linden S, Wegener M (2009) Gold helix photonic metamaterial as broadband circular polarizer. Science 325:1513–1515

    Article  Google Scholar 

  17. Ge J, Lei J, Zare RN (2012) Protein–inorganic hybrid nanoflowers. Nat Nanotechnol 7:428–432

    Article  Google Scholar 

  18. Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355

    Article  Google Scholar 

  19. Kiyonaka S, Sada K, Yoshimura I, Shibkai S, Kato N, Hamachi I (2004) Semi-wet peptide/protein array using supramolecular hydrogel. Nat Mater 3:58–64

    Article  Google Scholar 

  20. Nakanishi T (2010) Supramolecular soft and hard materials based on self-assembly algorithms of alkyl-conjugated fullerenes. Chem Commun 46:3425–3436

    Article  Google Scholar 

  21. Jayawarna V, Ulijn RV (2012) In: Gale PA, Steed JW (eds) Supramolecular chemistry: from molecules to nanomaterials, vol 7. Wiley, Chichester, p 3525–4013

    Google Scholar 

  22. Abramovich LA, Gazit E (2014) The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chem Soc Rev 43:6881–6893

    Google Scholar 

  23. Handelman A, Beker P, Amdursky N, Rosenman G (2012) Physics and engineering of peptide supramolecular nanostructures. Phys Chem Chem Phys 14:6391–6408

    Article  Google Scholar 

  24. Yan X, Zhu P, Li J (2010) Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev 39:1877–1890

    Article  Google Scholar 

  25. Zelzer M, Ulijn RV (2010) Next-generation peptide nanomaterials: molecular networks, interfaces and supramolecular functionality. Chem Soc Rev 39:3351–3357

    Article  Google Scholar 

  26. Hadjichristidis N, Tezuka Y, Prez DF (2011) Complex macromolecular architectures: synthesis, characterization, and self-assembly. Wiley, Hoboken

    Book  Google Scholar 

  27. Yuran S, Razvag Y, Reches M (2012) Coassembly of aromatic dipeptides into biomolecular necklaces. ACS Nano 6:9559–9566

    Article  Google Scholar 

  28. Su Y, Yan XH, Wang A, Fei JB, Cui Y, He Q, Li JB (2010) A peony-flower-like hierarchical mesocrystal formed by diphenylalanine. J Mater Chem 20:6734–6740

    Article  Google Scholar 

  29. Panciera M, Amorín M, Granja JR (2014) Molecular pom poms from self-assembling α,γ-cyclic peptides. Chem Eur J 20:10260–10265

    Article  Google Scholar 

  30. Mart RJ, Osborne RD, Stevens MM, Ulijn RV (2006) Peptide-based stimuli-responsive biomaterials. Soft Matter 2:822–835

    Article  Google Scholar 

  31. Mason TO, Chirgadze DY, Levin A, Abramovich LA, Gazit E, Knowles TPJ, Buell AK (2014) Expanding the solvent chemical space for self-assembly of dipeptide nanostructures. ACS Nano 8:1243–1253

    Article  Google Scholar 

  32. Koley P, Gayen A, Drew MGB, Mukhopadhyay C, Pramanik A (2012) Design and self-assembly of a leucine–enkephalin analogue in different nanostructures: application of nanovesicles. Small 8:984–990

    Article  Google Scholar 

  33. Koley P, Pramanik A (2012) Multilayer vesicles, tubes, various porous structures and organo gels through the solvent-assisted self-assembly of two modified tripeptides and their different applications. Soft Matter 8:5364–5374

    Article  Google Scholar 

  34. Demirel G, Buyukserin F (2011) Surface-induced self-assembly of dipeptides onto nanotextured surfaces. Langmuir 27:12533–12538

    Article  Google Scholar 

  35. Qin S-Y, Xu S-S, Zhuo R-X, Zhang X-Z (2012) Morphology transformation via pH-triggered self-assembly of peptides. Langmuir 28:2083–2090

    Article  Google Scholar 

  36. Koley P, Pramanik A (2014) pH-sensitive morphological transition from nanowire to nanovesicle of a single amino acid-based water soluble molecule. J Mater Sci 49:2000–2012. doi:10.1007/s10853-013-7887-3

    Article  Google Scholar 

  37. Williams RJ, Smith AM, Collins R, Hodson N, Das AK, Ulijn RV (2009) Enzyme-assisted self-assembly under thermodynamic control. Nat Nanotechnol 4:19–24

    Article  Google Scholar 

  38. Wang W, Chau Y (2009) Self-assembled peptide nanorods as building blocks of fractal patterns. Soft Matter 5:4893–4898

    Article  Google Scholar 

  39. Kwak J, Lee S-Y (2013) Enhanced photoluminescence by tyrosine-containing bolaamphiphile self-assembly. Langmuir 29:4477–4484

    Article  Google Scholar 

  40. Ding Y, Li Y, Qin M, Cao Y, Wang W (2013) Photo-cross-linking approach to engineering small tyrosine-containing peptide hydrogels with enhanced mechanical stability. Langmuir 29:13299–13306

    Article  Google Scholar 

  41. Abramovich LA, Reches M, Sedman VL, Allen S, Tendler SJB, Gazit E (2006) Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications. Langmuir 22:1313–1320

    Article  Google Scholar 

  42. Ryu J, Park CB (2010) High stability of self-assembled peptide nanowires against thermal, chemical, and proteolytic attack. Biotechnol Bioeng 105:221–230

    Article  Google Scholar 

  43. Handelman A, Natan A, Rosenman G (2014) Structural and optical properties of short peptides: nanotubes-to-nanofibers phase transformation. J Pept Sci 20:487–493

    Article  Google Scholar 

  44. Semin S, Etteger A, Cattaneo L, Amdursky N, Kulyuk L, Lavrov S, Sigov A, Mishina E, Rosenman G, Rasing T (2014) Strong thermo-induced single and two-photon green luminescence in self-organized peptide microtubes. Small. doi:10.1002/smll.201401602

    Google Scholar 

  45. Surmacz-Chwedoruk W, Malka I, Bożycki Ł, Nieznańska H, Dzwolak W (2014) On the heat stability of amyloid-based biological activity: insights from thermal degradation of insulin fibrils. PLoS ONE 9:e86320 (1–7)

    Article  Google Scholar 

  46. Sakurai M, Koley P, Aono M (2014) A new approach to molecular self-assembly through formation of dipeptide-based unique architectures by artificial supersaturation. Chem Commun 50:12556–12559

    Article  Google Scholar 

  47. Adams DA (2011) Dipeptide and tripeptide conjugates as low-molecular-weight hydrogelators. Macromol Biosci 11:160–173

    Article  Google Scholar 

  48. Koley P, Pramanik A (2011) Nanostructures from single amino acid-based molecules: stability, fibrillation, encapsulation, and fabrication of silver nanoparticles. Adv Funct Mater 21:4126–4136

    Article  Google Scholar 

  49. Baldwin RL (1986) Temperature dependence of the hydrophobic interaction in protein folding. Proc Natl Acad Sci USA 83:8069–8072

    Article  Google Scholar 

  50. Matsumura M, Becktel WJ, Matthews BW (1988) Hydrophobic stabilization in T4 lysozyme determined directly by multiple substitutions of Ile 3. Nature 334:406–410

    Article  Google Scholar 

  51. de la Rica R, Matsui H (2010) Applications of peptide and protein-based materials in bionanotechnology. Chem Soc Rev 39:3499–3509

    Article  Google Scholar 

  52. Saito Y (1996) Statistical physics of crystal growth. World Scientific, Singapore

    Book  Google Scholar 

  53. Scheffela A, Poulsena N, Shianb S, Kröger N (2011) Nanopatterned protein microrings from a diatom that direct silica morphogenesis. Proc Natl Acad Sci USA 108:3175–3180

    Article  Google Scholar 

  54. Marshall KE, Robinson EW, Hengel SM, Paša-Tolić L, Roesijadi G (2012) FRET imaging of diatoms expressing a biosilica-localized ribose sensor. PLoS ONE 7:e33771 (1–8)

    Article  Google Scholar 

  55. Wiersma DS (2013) Disordered photonics. Nat Photon 7:188–196

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the World Premier International Center (WPI) Initiative on Materials Nanoarchitectonics, MEXT, Japan, and in part by JPSP KAKENHI (24241047).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pradyot Koley or Makoto Sakurai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1,556 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koley, P., Sakurai, M. & Aono, M. Tunable morphology from 2D to 3D in the formation of hierarchical architectures from a self-assembling dipeptide: thermal-induced morphological transition to 1D nanostructures. J Mater Sci 50, 3139–3148 (2015). https://doi.org/10.1007/s10853-015-8875-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8875-6

Keywords

Navigation